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Abstract 
Grape (Vitis vinifera subsp. vinifera Hegi) cultivation and its related industry are important 

sources of income for several regions and countries worldwide. Table grape gains its popularity 
because of the economic significance of this plant. Global warming and climate change are 
widely recognized as significant challenges in the 21st century, posing a substantial threat 
to various aspects of the world. One area in which these phenomena may greatly impact is 
grape production across different regions. Grape is cultivated in several parts of Iran, ranging 
from northwest to northeast and southern regions. The present study was performed to predict 
grape cultivation areas in the present time and future climate changeably in the year 2050. 
Such studies can provide a clear vision of future cultivation and help us to plan conservation 
strategies for grape cultivation. We used a combination of different species distribution 
modeling as well as comparative phylogeny analyses for the present study.  Maxent, Dismo, 
and general linear model analyses of grape plant occurrence showed potential areas of grape 
cultivation at present and indicated a significant reduction in such areas by the year 2050. 
The model’s result indicated the importance of precipitation and temperature for grape future 
cultivation. We identified genetic loci with adaptive potentials to climate change, which may 
be used in conservation and crossing among grape cultivars. The present findings are discussed 
along with our previous population genetics and landscape genetic studies of the same grape 
cultivars and suggestions are provided for the conservation of these plants. 
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Introduction
Global warming and climate change are 

widely recognized as significant challenges 
in the 21st century. The rise in average global 
temperatures has been notable since the onset 
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of the Industrial Revolution. According to 
data provided by the Copernicus Climate 
Change Service, Europe experienced its 
warmest year on record in 2020. This can 
be attributed to increased greenhouse gas 
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emissions (GHG) from human activities 
(McIntyre et al., 2014). The global 
biodiversity is also significantly endangered 
by climate change. The occurrence of 
severe ecological ramifications is evident, 
encompassing recurrent droughts, rampant 
wildfires, and the emergence of invasive 
pests. These detrimental consequences have 
resulted in the depletion of plant species 
and a decline in productivity. Furthermore, 
they have led to scarcities in food crops and 
an escalation in costs for consumers. The 
genetic diversity and genetic connectivity of 
plant populations can be negatively impacted 
by climate change, resulting in a heightened 
homogeneity in genetic composition and 
reduced adaptability of species to future 
environmental changes (McIntyre et al., 
2014, Guan et al., 2021).  
Species distribution models (SDMs) are 
utilized to examine the current distribution 
of species and forecast their future 
occurrence in response to alterations in 
climate conditions (Elith and Leathwick, 
2009). Species distribution models (SDMs) 
have the potential to provide valuable 
insights into the geographical distribution 
of suitable habitats for species of interest, 
as well as population demography and 
genetic diversity (A. Lee‐Yaw et al., 
2022). By employing computer algorithms, 
species distribution modeling (SDM), also 
recognized as environmental niche (ENM), 
habitat, predictive habitat distribution 
modeling, and range mapping, can anticipate 
the geographic and temporal distribution of 
a species by utilizing environmental data 
(Elith and Leathwick, 2009). The central 
concept of species distributions is the niche 

theory with the fundamental niche versus 
the realised niche of a particular species 
(Hutchins, 1957). Various factors can affect 
the distribution of species, encompassing 
both abiotic and biotic environmental 
conditions. Additionally, the species’ 
capacity to navigate and determine which 
geographic areas are accessible during the 
relevant time frame plays a significant role. 
(Elith and Leathwick, 2009).
Climate data, such as temperature and 
precipitation, along with other variables like 
land cover, water depth, and soil type, are 
utilized by SDMs. Also, these models find 
application in the fields of conservation 
biology, evolution, and ecology, aiming 
to elucidate the impact of environmental 
factors on the distribution and population 
size of specific species. Data acquired can 
be utilized for predictive intentions, such 
as ecological forecasting. It can also be 
employed to determine the future distribution 
of a species under the influence of climate 
change. Additionally, data can be utilized 
to assess the past distribution of a species, 
aiding in the evaluation of evolutionary 
relationships. Furthermore, data can be used 
to predict the potential future distribution of 
an invasive species. Similarly, estimations 
are formulated regarding the present and/
or forthcoming suitability of the habitat 
for the species under consideration. 
These predictions hold significant value 
for management purposes such as the 
reintroduction or translocation of species 
at risk, as well as the strategic placement of 
reserves in preparation for potential climate 
alterations (Elith and Leathwick, 2009).
Climate affects plant species in various 
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ways, influencing different aspects of 
their biological organization and scale. 
These impacts can be observed in terms 
of geographic distribution, genetic 
composition, and variations in phenotype. 
The distributions of species are established 
by a range of characteristics and the capacity 
of organisms to adapt to various climatic 
conditions. These features and physiological 
tolerances interact to shape the distribution 
of species across the planet (Woodward and 
Woodward, 1987). 
The population genetic peculiarities of 
species are similarly influenced by climate. 
These peculiarities are closely tied to 
genetic structure, population dynamics, 
and migration patterns, all of which play a 
role in shaping the fine-scale distribution 
patterns of species (Avise, 2000). In recent 
decades, there has been notable progress 
in the field of Species Distribution Models 
(SDM). This advancement can be attributed 
to the growing demand from scientists for 
effective methodologies and tools to evaluate 
the potential effects of climate change on 
the geographical range of various species 
or communities of species. Furthermore, 
the potential impacts of climate change on 
ecosystems have garnered interest from 
both the public and private sectors (Hinojos 
Mendoza et al., 2020).
The integration of SDM into landscape 
genetics, also known as ecological niche 
modeling (ENM), has become increasingly 
prevalent. This methodology enables the 
investigation of the connection between 
genetic variation and environmental 
gradients, thereby providing insights into 
the role of gene flow and selection (Ortego 

et al., 2012, Poelchau and Hamrick, 
2012). Model predictions are frequently 
employed in these studies to depict the 
suitability of habitat or climate as a unified 
measure encompassing various intricate 
environmental factors. Subsequently, the 
impact of this measure on genetic patterns is 
evaluated. In the current scenario, multiple 
methodologies are utilized to estimate the 
potential consequences of climate change on 
the distribution and composition of species 
across various spatio-temporal scales. 
Several methodologies can be employed, 
such as the general linear model (glm), 
Artificial Neural Networks, regression trees, 
Bayesian approaches, as well as dismo and 
Mxent (Maximum entropy) methods. 
Grape (Vitis vinifera subsp. vinifera Hegi) 
cultivation and its related industry are 
important sources of income for several 
regions and countries throughout the world. 
These plants have been under cultivation 
and human consumption since ancient 
history (Crespan, 2004, This et al., 2004, 
Emanuelli et al., 2013). Table grape has 
gained popularity due to their versatility and 
economic significance. They are utilized 
in various forms such as wine, juice, fresh 
consumption, dried fruit, and distilled 
liquor. As a result, table grapes play a crucial 
role in the global economy and agricultural 
sector (Goufo et al., 2020, Parihar and 
Sharma, 2021, Ekhvaia and Akhalkatsi, 
2010). The grape  has also played a role in 
natural medicines with therapeutic potential 
since ancient civilizations, including Iran 
(Taskesenlioglu et al., 2022, Naqinezhad et 
al., 2018). 
Managers of grape orchards and the grape 
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industry as a whole need to take into account 
several critical factors. These include a 
comprehensive analysis of the genetic 
diversity and agronomic characteristics of 
grape cultivars, the selection of superior 
genotypes, and the assessment of the 
adaptability of these cultivars to various 
adverse environmental conditions in which 
grape cultivation is intended. However, we 
should also be cognizant of the consequences 
of climate change and global warming on 
the future cultivation of these important 
plants and the potential restriction of grape 
production due to these impacts. We suggest 
that a combination of population genetic 
study and landscape genetics investigation, 
along with niche modeling and prediction 
of future constraints on all important plant 
crops and ornamentals including grapes, 
may illustrate a detailed knowledge of 
genetic diversity, adaptation also the perils 
related to climate change on the cultivation 
of economically valuable plant species. The 
findings obtained from this multi-approach 
investigation provide us with a detailed 
dataset for future breeding and conservation 
plans these plant species. 
From our previous preliminary population 
genetic studies on table grapes of Iran 
(unpublished data), we learned that, though 
local cultivars show some degree of genetic 
distinctness, they have a great magnitude 
of gene flow and admixture too. Moreover, 
geographical variables of longitude and 
latitude have a more profound effect on the 
local genetic structuring of grape plants 
compared to altitude and temperature. We 
could also identify some genetic regions 
(SCot loci), that are potentially associated 

with a present geological extension of table 
grape. This study builds upon our previous 
research by examining the genetic factors 
influencing the geographical distribution of 
table grapes. Additionally, it aims to identify 
and forecast potential future cultivation 
areas for these plants within the country, 
taking into account the impacts of climate 
change.
Therefore, to fulfill these tasks, the 
following aims are proposed. Performing 
different species distribution modelings 
(SDMs), such as dismo, Maxent (Maximum 
entropy) and glm (general linear model), as 
well as comparative phylogenetic analyses 
to study the significant role of different 
environmental factors on grape population 
divergence. Identify the genetic regions or 
loci that may enhance the cultivation and 
propagation of table grapes under future 
climatic conditions. To achieve this, we 
employed the Bayesian approach utilizing 
the latent factor mixed model (LFMM). 
Our comprehensive review of the existing 
literature indicates that this is the inaugural 
report addressing the aforementioned 
objectives concerning grape plants in Iran.

Material and methods 
Plant material 

A comprehensive assessment was 
conducted in this research, encompassing 
a total of 178 accessions derived from 35 
cultivated populations of V. vinifera L. These 
cultivated populations were sourced from 
six provinces, namely Fars, North Khorasan, 
Kordestan, East Azarbaijan, Hamadan and 
Zanjan. The detailed information regarding 
the characteristics of the populations and 
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the number of individuals examined can be 
found in Table 1.
In this study, we used the information of 
Kajkolah et al. (in press), genomic DNA 
was isolated from leaves using a modified 
extraction protocol known as Cetyltrimethyl-
ammonium bromide-activated charcoal 
(CTAB) method. This procedure was 
employed to extract the DNA, which was 
subsequently utilized as the input material for 
the preparation of DNA samples (Križman 
et al., 2006). The extraction method utilized 
activated charcoal, polyvinylpyrrolidone 
(PVP), and 2-mercaptoethanol to facilitate 
the binding of polyphenolics during the 
extraction process. This approach was carried 
out under gentle extraction and precipitation 
conditions, ensuring the isolation of 
high-molecular-weight DNA without 
any disruptive impurities. To determine 
the concentration of DNA, aliquots were 
subjected to electrophoresis on a 1% agarose 
gel. For the PCR reactions, a total volume 
of 25 μL was utilized, comprising 14 μL of 
master mix, 8 μL of water, 1 μL of Primer 
(SCoT), and 3 μL of DNA. Three different 
SCoT primers, namely SCoT-1, SCoT-2, 
and SCoT-36, were employed in this study. 
The polymerase chain reaction (PCR) was 
conducted using a total of 45 cycles. The 
initial denaturation step lasted for 4 minutes 
at a temperature of 95 °C. Subsequently, the 
reaction underwent a denaturation step at 94 
°C for 1 minute, followed by an annealing 
step at a temperature range of 54-56 °C for 
1 minute. Finally, an extension step was 
performed at 72 °C for 1 minute. The reaction 
was finalized through a concluding extension 
phase lasting 7 minutes at a temperature of 

72 °C. The resulting amplification products 
were subjected to analysis using 2% agarose 
gel electrophoresis and fluorescence 
staining on KBC power load, a product of 
Kowsar Biotech Company located in Iran. 
To determine the size of the fragments, a 
100-bp molecular size ladder was employed 
(Fermentas, Germany).
Data analysis
Species distribution modeling (SDM)
A variety of techniques were employed 
to conduct species distribution modeling 
(SDM) for table grapes in the region, 
including the utilization of Dismo, Maxent, 
and glm analyses (1). 
The grape cultivar’s contemporary species-
climate relationship was simulated by 
employing Maxent, a maximum entropy 
modeling technique specifically designed 
for presence-only species data, which 
effectively handles irregularly sampled data 
(Phillips et al., 2006).
Maxent employs a statistical technique 
to estimate the distribution that exhibits 
the highest level of uniformity, commonly 
referred to as the ‚maximum entropy‘, within 
the study area. This estimation is subject 
to the condition that the expected value 
of each environmental predictor variable, 
based on this estimated distribution, aligns 
with its empirical average derived from 
the collection of species‘ presence records 
(Phillips et al., 2006).
Maxent was utilized to conduct model runs 
incorporating linear, quadratic, and product 
features. By employing Maxent’s logistic 
output, climatic habitat suitability maps 
were generated for grape cultivars. These 
maps offer an estimation of the probability of 
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presence in geographic space, ranging from 
0 (indicating low suitability) to 1 (indicating 
high suitability).
We have determined significant climatic 
factors by employing Maxent’s metrics 
of variable contribution and permutation 
importance. Due to the sensitivity of these 
metrics to correlations among variables, it 
becomes crucial to consider their impact. In 
addition, we employed Maxent’s jackknife 
tests to assess the significance of variables. 
These tests evaluate the (1) predictive 
capability of individual variables when 
utilized independently and (2) the distinct 
impact of each variable by measuring the 
reduction in predictive capability when a 
variable is omitted from the model.
In our research, we utilized the dismo 
package within R version 4.1.2 to perform 
species distribution modeling (SDM) 
analysis. The Bioclim algorithm, recognized 
for its effectiveness in this domain, was 
applied. This algorithm is often known as 
the ‘climate-envelope-model’ and has seen 
extensive use in the field.
SDMs necessitate the presence of species 
absence point data, which we acquired 
through the utilization of pseudo-absences 
(PAs) techniques, in order to forecast 
appropriate species habitats. All of the 
models were developed using 80% of the 
occurrence data for training purposes, while 
the remaining 20% was used for testing. The 
evaluation of the models was conducted 
using both the threshold method and the 
determination of the Area Under the Curve 
(AUC) through the Receiver Operating 
Characteristic (ROC) curve.
In the dismo model, the initial step involved 

estimating the pseudo-absence points, after 
which the model was evaluated through 
a post hoc analysis. This was done by 
partitioning the data into training and test 
data (80% and20% respectively). The dismo 
package’s k-fold function was employed to 
To systematically assign each observation to 
a random group.
By utilizing the group-presence vector 
alongside the observed data, we successfully 
segregated our observations into a training 
data set and a testing data set. Then we 
performed model testing for both the train 
data as well as the test data. 
The threshold function was employed in 
our study, providing various options for 
determining the threshold cutoff based 
on the state parameter. In this particular 
case, we opted for “spec_sens”, which 
establishes the threshold at the point where 
the combined values of sensitivity (true 
positive rate) and specificity (true negative 
rate) are maximized. The threshold was 
employed to create a visual representation 
of the projected distribution of V. vinifera on 
a map. The same was done for forecasting 
data in 2050.
By utilizing the BIOCLIM algorithm, the 
similarity of a given location is determined 
by evaluating the environmental variable 
values at that particular location in relation to 
a percentile distribution of values observed 
at known occurrence sites, also known as 
‘training sites’. The location that exhibits a 
closer proximity to the 50th percentile (the 
median) is regarded as being more suitable 
(Hijmans and Graham, 2006). The R version 
4.1.2 was utilized to conduct a glm analysis 
in a similar manner.
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In the field of species distribution modeling, 
we employed climate data layers that were 
projected for two distinct periods: the current 
period spanning approximately 1950 to 
2000, and the future period of the year 2050 
(averaging data from 2061 to 2050). These 
projections were based on 19 bioclimatic 
variables, and the spatial resolution of the 
data was set at 5 minutes, equivalent to 
approximately 9 km at the equator.
The WorldClim database served as the 
source for the data acquisition process. 
These data were specifically downloaded 
to investigate the implications of climate 
change. To evaluate the potential impacts, 
projections were made for future climate 
variables in the year 2050, employing the 
Representative Concentration Pathways 
(RCP) scenario of 2.6.
Bioclimatic variables were employed in our 
study, which were obtained from the monthly 
temperature and rainfall data. The coding 
scheme for these bioclimatic variables is as 
follows:
BIO1 = Annual Mean Temperature
BIO2 = Mean Diurnal Range (Mean of 
monthly (max temp - min temp))
BIO3 = Isothermality (BIO2/BIO7) (×100)
BIO4 = Temperature Seasonality (standard 
deviation ×100)
BIO5 = Max Temperature of Warmest 
Month
BIO6 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (BIO5-
BIO6)
BIO8 = Mean Temperature of Wettest 
Quarter
BIO9 = Mean Temperature of Driest Quarter
BIO10 = Mean Temperature of Warmest 

Quarter
BIO11 = Mean Temperature of Coldest 
Quarter
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
BIO15 = Precipitation Seasonality 
(Coefficient of Variation)
BIO16 = Precipitation of Wettest Quarter
BIO17 = Precipitation of Driest Quarter
BIO18 = Precipitation of Warmest Quarter
BIO19 = Precipitation of Coldest Quarter
The methodology adopted in this scheme 
closely resembles that of ANUCLIM, 
with the exception being the treatment 
of temperature seasonality. In contrast to 
ANUCLIM, which employs the coefficient 
of variation, this scheme utilizes the standard 
deviation. This alteration is necessary due 
to the lack of meaningful interpretation 
when applying the coefficient of variation to 
temperatures ranging between -1 and 1.
Phylogenetic comparative analyses
The phylogenetic signal of the environmental 
variables under investigation was evaluated 
using Blomberg’s K and lambda parameters, 
as implemented in the phytools package in 
R. These parameters provide insights into 
the influence of environmental variables 
on the divergence and similarity of grape 
populations.
Pagel’s λ is a mathematical transformation 
applied to phylogenetic data in order to 
optimize the alignment of trait data with a 
Brownian Motion model (Pagel, 1999).
Blomberg’s K can be characterized as the 
quotient of two distinct ratios. The initial 
ratio, referred to as the observed ratio, is 
obtained by dividing the Mean Squared Error 
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of tip data by the Mean Squared Error of data 
computed using the variance-covariance 
matrix derived from the phylogeny. On the 
other hand, the second ratio, known as the 
expected ratio, is derived from the same 
procedure but employs data from a model 
assuming the Brownian motion of trait 
evolution (Blomberg et al., 2003).
Blomberg’s K quantifies the phylogenetic 
signal’s potency by comparing the mean 
squared error of the tip data (MSE0) obtained 
from the phylogenetic corrected mean with 
the mean squared error calculated using the 
variance-covariance matrix derived from the 
provided phylogeny, assuming Brownian 
motion (BM) (Blomberg et al., 2003).
The estimation is calculated in the following 
manner:
Disparity analyses
To visualize how phylogeny relates to the 
distribution of populations in terms of their 
traits, we devised a ‘phylomorphospace’. 
This innovative method involves projecting 
the branches of a phylogenetic tree onto a 
two-dimensional morpho-space, thereby 
representing the diversity of traits among 
different species or populations (Revell, 
2012). A phylomorphospace was established 
to encompass the analyzed variables, 
including the PCA-axes corresponding to 
these variables.
Identification of adaptive genetic regions
Association between SCoT loci and 
temperature and precipitation of the current 
time and also in 2050 data was performed 
by LFMM (Latent factor mixed model) 
as perfumed in lfmm package in R ver.4.1 
(Frichot et al., 2013). LFMM utilizes a 
Bayesian approach in its methodology 

which considers both genetic data and 
environmental / climate variables and other 
confounding population genetics factors. 

Results 
Species distribution modeling 
Dismo results 

According to the dismo package’s model, 
the probability of grape cultivars occurring 
is at its highest, reaching 0.8. This finding 
implies that our collection of these plants 
from areas where they are known to occur 
is quite extensive. However, it is important 
to acknowledge that there are still potential 
areas that have not been included in our 
collection of plant materials.
Following the estimation of pseudo-absence 
points, a post hoc evaluation of the model was 
performed, as outlined in the material and 
methods section. Ultimately, the threshold 
was utilized to create a map depicting the 
projected distribution of table grapes (Fig. 
1). The distribution area map that has been 
predicted provides valuable insights into 
the regions where grapes have the potential 
to thrive and should be contemplated for 
planning and conservation purposes to 
protect this species.
Based on the analysis of climate data for the 
year 2050, it is anticipated that grape plants 
will show a diminished presence in the 
southern areas of Iran (Fig. 2). The findings 
reveal a notable decline in the prevalence 
of these plants when compared to earlier 
periods. The model used for this analysis 
achieved an AUC value of 0.98, indicating 
its high accuracy and reliability.
The results we obtained in our previous study 
concerned with landscape genetic analysis of 
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the same grape cultivars also demonstrated 
the existence of genetic structuring of 
grapes through the identification of several 
genetic clines situated in the north-eastern 
region in the north-west of the country 
which extends to some parts of Southern 
Iran as also produced by predicted presence 
area presented here. The anticipated climate 
change in 2050 may result in the potential 
loss of grape cultivation areas in both 
genetic cline regions. Therefore, we should 
plan for this great loss ahead of time, as will 
be suggested in the following paragraphs. 
Maxent results 
The results from the Maxent modeling 
produced distribution maps that closely 
resembled those created with the dismo 
package. The importance and significance 
of bioclimatic variables are illustrated 
in Figure 3. Variables associated with 
precipitation are essential in influencing 
the current distribution of grape plants. 
This finding holds true when forecasting 

the distribution of grape plants for the year 
2050.The performance of the Maxent model 
was found to be highly accurate based on the 
AUC and ROC curves, both in the present 
time and in the forecast for the year 2050 
(Fig. 3). Both the AUC for the present time 
and the year 2050 demonstrated a score 
of 1, signifying an impeccable model. 
The glm analyses of both multiple general 
linear methods and logistic regression also 
produced a significant correlation (p<0.001), 
between longitude and latitude as well as 
precipitation. Both R-squared and AUC = 
0.80, showed a high accuracy of the models 
obtained. 
Comparative phylogenetic analyses 
Phylogenetic signal determined for 
environmental variable longitude, produced 
a significant K = 0.04 (P-value calculated by 
performing 1000 randomizations = 0.001), 
and lambda = 0.52 (P-value calculated using 
the LR test = 1.44907e-07 for), respectively. 
Similar results were obtained for latitude (K 
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= 0.14, P = 0.001), and longitude (K = 0.06, 
P = 0.002), as well as temperature (K = 0.14, 
P = 0.001). 
We also obtained significant Pagals’ 
lambda value (> 0.6), for these variables 
(Fig. 4). Therefore, all these environmental 
and climatic variables play a role in the 

differentiation and distribution of grape 
populations.
The findings are corroborated by the 
development of a two-dimensional phylo-
morphospace that demonstrates the 
differentiation and distribution of population 
groups within the space (Figs. 5 and 6).
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SCoT loci with adaptive potentials to future 
climate change
LFMM analysis followed by FDR (False 
detection rate), identified SCoT loci numbers 
9, 13, 23, 28, and 29, as potentially adaptive 
to the temperature in the year 2050 (Fig. 7). 
Previously, we had identified SCoT loci 7 
and 23 as potentially adapted to the present 
time temperature. 

Discussion 
Species distribution model analysis

We reported the predicted distribution of 
table grapes both in the present time as well 
as in the year 2050, with climate change in 
the course of time. The predication models 
showed a reduced geographical extent of 
grape cultivation in the future time, which 
should be tackled properly and conserve the 
cultivation level of this important crop plant. 
We obtained almost similar results from 
different species models utilized and 
irrespective of different computational 
methods used in these models. The Maxent 
model offers a thorough methodology for 

accurately forecasting the reactions of 
intricate species to environmental influences. 
The Maxent program incorporates various 
computational techniques, rendering it a 
highly proficient tool for addressing diverse 
data collection strategies. In the current 
study, we utilized 178 plant specimens 
gathered from 35 occurrence data points.All 
feature types, including interactions among 
predictors, are utilized in Maxent when 
there are a minimum of 80 occurrences 
(Elith and Leathwick, 2009). In instances 
where the occurrences fall between 15 and 
79, the Maxent model incorporates linear, 
quadratic, and hinge features. In contrast, 
when the occurrences are between 10 and 
14, it utilizes only linear and quadratic 
features. Furthermore, for cases with 10 
occurrences or fewer, the Maxent model 
depends exclusively on linear features. The 
‘jackknife’ contributions plot we obtained 
in the present study, to account for the 
dependencies between predictor variables, 
the models are developed in two ways: one 
model focuses solely on a particular feature, 
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while the other model incorporates all features 
except for the one under consideration. The 
x-axis represents the measure of the models’ 
predictive ability, which can be assessed 
using either 1) training gain, 2) test gain, or 
3) AUC on test data. We obtained AUC = 1, 
which shows perfect predictive accuracy of 
the model. 
The dark blue bars illustrate the performance 
of a model that relies exclusively on a 
particular feature, contrasted with the 
maximum performance of the model, 
represented by the red bar. Currently, in 
species distribution, the BIOCLIM variable, 
primarily associated with precipitation, 
emerges as a significant feature. Conversely, 
the light blue bars indicate the model’s 
performance when the influence of that 
specific feature is excluded. Consequently, 
the omission of the bio18 and bio3 variables 
from the model may lead to a decrease 
in accuracy. In general, the BIOCLIM 
variables studied in grape cultivars showed 
the presence of both dark blue colored and 
light blue colored bars in the gain plot. 
The significant factors can exhibit either 1) 
substantial dark blue bars, signifying a robust 
(yet potentially non-exclusive) impact on 
presences; 2) brief light blue bars, indicating 
that no other factor possesses comparable 
information; or 3) both, suggesting that the 
factor independently predicts the global 
suitability of the red bar model (Elith and 
Leathwick, 2009, Kearney and Porter, 2009). 
The geographical distribution of a species is 
shaped by a variety of factors that stem from 
both evolutionary and ecological processes 
(Riordan et al., 2016). This distribution 
can be influenced by abiotic factors, such 

as large-scale climate conditions, as well 
as biotic interactions that occur on a more 
localized level. The distribution of species 
is affected by a range of abiotic factors, 
including climatic elements such as the 
atmosphere, sunlight, temperature, salinity, 
and humidity. Additionally, edaphic agents 
like soil characteristics, including local 
geology, coarseness, aeration, and soil pH 
play a significant role. Furthermore, social 
factors, such as land use patterns and water 
availability, also contribute to species 
distribution (Elith et al., 2006, Booth et al., 
2014).
The distribution of species may be affected 
by a range of biotic factors, including 
predation, disease, and competition for 
essential resources such as water, food, 
and mates. Notably, human activities, 
such as continuous industrialization and 
construction projects, play a significant role 
in altering species distribution.(Booth et al., 
2014, Elith et al., 2006). 
The response of various populations within a 
species to climate can differ significantly. For 
instance, species with extensive distributions 
spanning multiple climatic regions may 
display distinct associations with climate 
when analyzed at regional levels compared 
to species-wide scales (Rehfeldt et al., 
2002). Therefore, it has been suggested 
that it is more suitable to concentrate 
on geographical variations in species 
distribution while investigating the impact 
of climate on various biological processes, 
particularly in regions characterized by 
considerable environmental heterogeneity. 
(Riordan et al., 2016). 
The climatic variables that play a role in 
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grape populations distribution models are 
precipitation and eco-physiological limiting 
factors, namely temperature and water 
availability, that can impose constraints 
on  survival and ecological performance 
of a species. (Guisan and Thuiller, 2005). 
However, we can’t overlook the additional 
environmental agents that have a significant 
impact on ecological and evolutionary 
processes, including biotic interactions and 
soil composition as a landscape genetic 
study showed the presence of genetic clines 
at both the North-East of the country as well 
as the North-Western regions, which may 
differ in land cover features. 
These models used in our study revealed an 
enormous reduction in the cultivation areas 
by the year 2050. The remaining suitable 
areas would be mostly confined to the 
North-West of Iran and to a lesser extent in 
the North-Eastern region. 
In a similar study, Mendoza, et al. (2020), 
aimed to evaluate the appropriate regions in 
France for growing grapes (Vitis vinifera) 
under current and future climate conditions. 
They employed the Climate Data Science 
(CDS) Toolbox and Species Distribution 
Model (SDM) to accomplish this task. The 
model was constructed by incorporating 
23 variables that were readily accessible 
online. Assumptions were made regarding 
the interconnections between these variables 
and the spatial distribution of species. 
The research indicated that the area’s 
most conducive to grapevine cultivation 
are anticipated to undergo a substantial 
decline, estimated between 41% and 83%, 
by the year 2070, taking into account the 
current locations of vineyard parcels. The 

findings highlight a possible relocation 
of the appropriate regions in the northern 
section of the French land. Additionally, 
they indicate a potential displacement of the 
most favorable regions in terms of altitude, 
with an average increase of 60 meters for the 
RCP6.0 scenario (Hinojos Mendoza et al., 
2020). 
Genetic structure and variability concerning 
geographical species distribution
In this present study, we identified some 
genetic loci with potential adaptive value 
with future climate change, and particularly 
with precipitation and temperature. 
Some of these loci have been elected by 
local environmental conditions too. Our 
previous research in population genetics 
and landscape genetics (unpublished data) 
revealed that Iranian table grapes exhibit 
considerable genetic variation and are 
genetically organized in response to both 
local and global environmental factors. 
These cultivars reveal a remarkable genetic 
admixture and contain a low to moderate 
within cultivar / or population. Genetic 
variability ranging from 5. 71% to 60%.  
Genetic patterns at a regional level are 
determined by two main factors: restricted 
gene flow, leading to isolation by distance 
(IBD), and isolation by environment (IBE). 
By which, gene flow is more prevalent 
among comparable environments due to 
selective forces or ecological barriers that 
impede movement (Wang and Bradburd, 
2014, Soularue and Kremer, 2014). 
The occurrence of adaptive genetic loci 
related to both geographical variables of 
longitude and latitude, or altitude, and those 
related to precipitation and temperature is 
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of great significance in all plants. Species 
including grape, as these adaptive loci can 
help the plants during movement, migration, 
or artificial introduction to new habitats 
and cultivation areas. The immigrants 
who are not well-suited to the prevailing 
climatic conditions of the local area may 
face negative consequences, leading to 
a positive relationship between adaptive 
divergence and genetic differentiation, 
which is commonly referred to as isolation 
by adaptation (IBA) (Andrew et al., 2012, 
Nosil et al., 2008).
The environmental conditions in vineyards 
worldwide are being modified as a result 
of climate change. While some grape-
growing regions may benefit from positive 
impacts on grape production, the quantity 
and quality of wines produced can be 
adversely affected in regions experiencing 
hotter or drier conditions (Duchêne, 2016). 
The process of adapting to new climatic 
conditions encompasses adjustments in the 
cultivation areas, alterations in vineyard 
or cellar practices, and the use of new 
combinations of rootstock and scion. The 
grape industry has the potential to respond 
to climatic changes by relocating cultivation 
zones and altering the characteristics of the 
wines produced, leveraging the inherent 
small-scale variability that already exists. 
(Duchêne, 2016).
Vegetative propagation is the method 
by which grape plants are reproduced. 
Accidental modifications in the DNA during 
cell division can lead to the emergence 
of new characteristics in a bud. These 
inherent and unplanned occurrences may 
not always have significant impacts, but 

when they do, the newly formed plant can 
showcase fascinating traits, including a 
white coloration, a fragrance reminiscent 
of Muscat grapes, or an upright growth 
habit, for instance. The process of genetic 
variability remains in progress, giving rise 
to what is referred to as “clonal variation”. 
This entails the identification of slightly 
different plants within a particular variety 
and transmitting their unique characteristics 
through vegetative propagation (Duchêne, 
2016). Moreover, the exploration of the 
available grape clone collections can reveal 
any phenotypic variations that hold the 
potential for aiding in the adjustment to 
climate change.
We reported a high magnitude of genetic 
admixture among grape cultivars of Iran, 
probably due to some events of sexual 
reproduction. The genome of the grapevine 
exhibits a significant level of heterozygosity, 
suggesting that the crossbreeding of two 
different grapevine varieties can produce 
an infinite variety of diverse offspring. This 
observation highlights the pivotal role of 
sexual reproduction, whether influenced 
by random events or human intervention, 
genetic diversity identified in cultivated 
grapevines(Duchêne, 2016). 
Genetic diversity plays a crucial role in 
adapting to climate change and for adjusting 
cultivation zones and training systems. 
By utilizing various genotypes for both 
scion and rootstock, including new ones, 
the potential for adaptation is significantly 
enhanced (Duchêne, 2016). 
In addition to our study and reporting genetic 
loci related to climate change, several 
studies have been undertaken to analyze and 
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compare the behaviors of diverse grapevine 
genotypes under water restriction conditions 
(Duchêne, 2016). In a recent investigation 
conducted by Coupel-Ledru et al. (2014), 
the genetic foundation of this particular 
attribute was explored through the utilization 
of a QTL methodology. The study involved 
an analysis of 186 genotypes, derived 
from a reciprocal cross between Syrah and 
Grenache. This comprehensive examination 
yielded significant findings regarding the 
hereditary patterns associated with this trait, 
thereby offering valuable insights into its 
inheritance mechanisms (Coupel-Ledru et al., 
2014). The authors of this study successfully 
recognized quantitative trait loci (QTLs) 
associated with various traits, including 
specific hydraulic conductance, minimal 
daytime leaf water potential, and specific 
transpiration rate. However, achieving the 
most favorable blend of alleles from various 
loci, which results in optimal behavior in 
situations characterized by a lack of water 
resources  in natural environments, remains 
a complex and arduous process (Tardieu, 
2003). Rootstocks exhibit significant 
diversity in their capacity to tolerate water 
stress among available grape cultivars, 
which can be monitored and employed in 
the process of regenerating incompatible 
selections. The environmental conditions 
in numerous grape orchards worldwide 
will experience significant alterations due 
to climate change, which will consequently 
have a profound effect on grape production 
and the industry as a whole... We reported 
here that a reduction in water precipitation 
and an increase in temperature by the 
year 2050 could significantly reduce the 

agricultural land available for cultivation in 
Iran. Consequently, it is essential to develop 
various conservation and selection strategies 
to safeguard grape production within the 
nation. These strategies should encompass 
the evaluation of germplasm for tolerance 
to water stress, the identification of genetic 
loci associated with adaptation to climate 
change, as well as the implementation of 
artificial selection and inter-varietal crossing 
techniques. 
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