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Abstract
Phycobiliproteins, including phycocyanin, allophycocyanin, and phycoerythrin, have di-

verse applications in food, cosmetics, and biomedical industries. Consequently, optimizing 
extraction conditions and identifying high-yielding species remain critical areas of study. The 
genus Osmundea is recognized for its significant phycobilin content. This study examines the 
macroalga Osmundea caspica, a member of the phylum Rhodophyta. The specimens of O. 
caspica were collected from the Caspian coasts of Sisangan in Mazandaran Province (Iran). 
The samples were lyophilized and subsequently ground after washing and removal of impu-
rities. The extraction of phycobilins was evaluated using three solvents: distilled water, 100 
mM phosphate-buffered saline (PBS), and 150 mM PBS (all adjusted to pH 7). Two distinct 
protocols: freeze-thaw at –20 °C for 24 hours and ultrasonication at a power of 70 W for 10 
minutes. The results demonstrated that phycoerythrin exhibited the highest concentration 
among the extracted phycobilins, with an average of 0.0453 mg/mL, followed by phycocyanin 
(0.0067 mg/mL) and allophycocyanin (0.0018 mg/mL). Conversely, utilizing distilled water as 
the extraction solvent in conjunction with the Freeze-thaw Pre-treatment resulted in a greater 
extraction efficiency when compared to alternative methods. The results of one-way ANOVA 
showed that the differences in the mean concentrations and purity levels of phycobiliproteins 
among the extraction methods were statistically significant at the 0.05 level. For concentra-
tions of phycocyanin (F:3.551, df: 5, P< 0.05), allophycocyanin (F: 23.984, df: 5, P< 0.05), 
phycoerythrin (F: 23.685, df: 5, P< 0.05), total phycobiliproteins yield (F: 18.489, df: 5, P< 
0.05), purity of phycocyanin (F: 16.109, df: 5, P< 0.05), allophycocyanin (F: 34.155, df: 5, 
P< 0.05) and phycoerythrin (F: 25.353, df: 5, P< 0.05). This study presents promising results, 
particularly regarding the potential of phycoerythrin among the phycobiliproteins of the red 
alga Osmundea caspica, and offers a clear perspective for further exploitation of this species.
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Introduction
Marine biomass is recognized worldwide 

as a valuable carbon source, which can be 
used for food, feed, chemicals, and biophar-
maceuticals of paramount industrial rele-
vance (Merlo et al. 2021). Macroalgae com-
prise a group of marine algae classified into 
three major groups: green algae (Chlorophy-
ta), brown algae (Phaeophyta), and red al-
gae (Rhodophyta). The species diversity of 
macroalgae in the Caspian Sea is lower com-
pared to the Persian Gulf. However, 13 spe-
cies of brown algae and 25 species of red al-
gae have been reported from this sea, which 
are typically distributed along rocky-coastal 
areas (Eshaghzadeh et al., 2023; Stepanian, 
2016). In the Iranian coasts of the Caspian 
Sea, O. caspica is the only confirmed spe-
cies of red algae. Previously, in past classi-
fications, this species was categorized under 
the genus Laurencia (Eshaghzadeh et al., 
2023). Red algae, along with cyanobacteria 
and cryptophytes, are among the primary 
sources of phycobiliproteins (PBPs).
PBPs are water-soluble pigments. They are 
organized into complexes known as phyco-
bilisomes, which are located on the outer 
surface of the thylakoid membrane (Kova-
leski et al., 2022). This complex functions in 
light energy harvesting, as chlorophyll a ex-
hibits maximum absorption at wavelengths 
of 430 nm and 660 nm (Glazer, 1994). Thus 
allowing the photosynthesis and the survival 
of living organisms even at low light inten-
sities (Dumay et al., 2014). Phycobilisome 
captures light energy through its phycobilin 
chromophores and directs it towards reac-
tion centers where it is converted into chem-
ical energy (Roy et al., 2011). Based on their 

structure and properties, specifically on their 
radiation absorption ability, PBPs are divid-
ed into four main types (Pagels et al., 2019), 
include phycoerythrin (PE), which exhibits 
a pink-purple color and λmax = 540-570 
nm; phycocyanin (PC), with a blue color 
and λmax = 610-620 nm; allophycocyanin 
(APC), with a blue-green hue and λmax = 
650-655 nm (Lijassi et al., 2024) and Phy-
coerythrocyanin (PEC), with a magenta 
color and λmax = 560–600 nm (Munier et 
al., 2014). PE, with a total molecular weight 
around 240 kDa, can be classified into four 
classes: B-PE (Bangiophyceae PE, contain-
ing PEB only or containing PEB and phy-
courobilin), C-PE (cyanobacterial-PE), and 
R-PE (Rhodophyta-PE). Indeed, R-PE is 
recognized for its stability towards several 
denaturant agents, namely temperature and 
pH (Galland-Irmouli et al., 2000). As the 
main light-harvesting complexes, phycobil-
isomes represent one of the crucial factors 
of algae and cyanobacteria mass cultures’ 
productivity. It has been demonstrated that 
phycobilisome truncation can enhance bio-
mass accumulation under strong light (Kirst 
et al., 2014). On the other hand, under mod-
est or low irradiance, the antenna truncation 
resulted in growth rates and biomass accu-
mulation reduction (Kirst et al., 2014; Page 
et al., 2012). These proteins are utilized in 
the food industry as natural colorants (soft 
candy, jellies, and ice sherbets), as well as in 
cosmetic and biomedical applications (e.g., 
as fluorescent labels for flow cytometry, im-
munoassays, and more). Additionally, they 
exhibit a wide range of biological activities, 
including antioxidant, antibacterial, antican-
cer (Lijassi et al., 2024), anti-inflammatory, 
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neuroprotective, and immunomodulatory 
(Lauceri et al., 2019). PBPs aqueous ex-
tracts obtained from Arthrospira platensis 
(Spirulina) are approved by EFSA (Regula-
tion (EU) No. 1333/2008 and No. 231/2012) 
as coloring foodstuff. The US FDA classi-
fies PC (21CFR73.1530) as a food natural 
color additive (Lauceri et al., 2019). Various 
methods are available for disrupting the cell 
wall to extract phycobilins. Early protocols 
typically employed physical or chemical 
methods to destroy trichomes and extract 
PBPs by using water as a major solvent 
(Doke, 2005; Eriksen, 2008). These include 
repeated freeze-thaw cycles, ultrasonica-
tion, pressurized distilled water, microwave 
treatment, pulsed electric field, homogeni-
zation, and others. The solvents mentioned 
(distilled water, PPB, PBS, Tris-Cl buffer 
with sodium azide, and sodium chloride) are 
often used as buffers and diluents in various 
scientific techniques, particularly in biologi-
cal and biochemical research. These solvents 
help maintain a stable pH, which is crucial 
for the stability and activity of biological 
molecules like proteins and nucleic acids. 
(Kovaleski et al., 2022). More recent works 
combined chemical and physical methods 
for cell wall disruption and introduced other 

methods like enzymatic cell wall digestion 
or supercritical CO2 extraction (Marzorati et 
al., 2020; Berrouane et al., 2022). The cell 
wall of macroalgae consists of polysaccha-
rides (agar and cellulose), which are an ob-
stacle to cell rupture during the extraction 
of their bioactive compounds (Mittal et al., 
2017). The concentration and quality of 
phycobilins depend on key extraction pa-
rameters, such as the method of cell wall 
disruption, the solvent used, extraction time, 
and separation conditions. The present study 
aimed to investigate the extraction of phyco-
bilins, particularly phycoerythrin, from the 
red macroalga O. caspica, which is native to 
the southern coast of the Caspian Sea. Given 
the biological significance and commercial 
potential of phycobilins as natural pigments 
and fluorescent markers, this research sought 
to evaluate the efficiency of the extraction 
process and to explore the feasibility of uti-
lizing O. caspica as a novel and sustainable 
source of high-value phycobiliproteins.

Material and methods
Sampling

The red macroalga O. Caspica was col-
lected from shallow areas (approximate-
ly 20 to 40 centimeters deep) of the rocky 
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shores in Sisangan, Nowshahr, Mazandaran 
Province, Iran, in mid-March (36.579133 N, 
51.828014 E) (Figure 1). Sampling was car-
ried out.
Preparation and Processing
The samples were washed with marine wa-
ter and then distilled water to remove impu-
rities, and then lyophilized in the dark for 
24 hours. The samples were then ground us-
ing a porcelain mortar, and their weight was 
measured.
Phycoerythrin extraction using ultrasonica-
tion
To compare the effects of solvents in the ex-
traction process, three solvents were used: 
distilled water, 100 mM PBS, and 150 mM 
PBS, all adjusted to pH 7, with a weight-
to-volume ratio (W/V) of 1:25. Additional-
ly, for cell disruption, the performance of 
intracellular content release was compared 
using sequential freeze-thaw cycles and ul-
trasonication methods. Accordingly, one 
set of samples underwent the freeze-thaw 
process, in which the samples were frozen 
at –20 °C for 24 hours and subsequently 
thawed at room temperature. while the sec-
ond set was subjected to ultrasonication. 
During the ultrasonication process, the sam-
ples were placed in an ultrasonic device 
(Tosee Fanavari, 220-Iran) at a power of 70 
W for 10 minutes. The freeze-thaw and ul-
trasonication procedures were repeated for 
three cycles. Between each cycle, the sam-
ples were vortexed for 2 minutes to enhance 
cell disruption and extraction efficiency. The 
solution was then filtered using filter paper 
(Fig. 2) and centrifuged (Universal 320R 
Hettich-Germany) at 8,000 rpm for 10 min-
utes at 4 °C. The supernatant was collected 

for spectrophotometric analysis.
Quantification of Extracted Phycobilins
The quantification of phycobilins was per-
formed using a spectrophotometer (Lambda 
25-Singapur) and modified equations (Lijas-
si et al., 2024). Thus, the amount of each of 
the PC, APC, and PE compounds was calcu-
lated using the following equations.

Phycocyanin (mg∕ml) 

 Allophycocyanin (mg∕ml) 

phycoerythrin (mg∕ml) 

The extraction yield of PBPs was estimat-
ed following the equation of (Silveira et al. 
2007):
PBPs(mg/g)

V is the solvent volume (ml), and DB is dry 
biomass (g).
Purity was determined by using the formula 
below (Minkova et al., 2003):

PC Purity =    

APC Purity =             

PE Purity = 

Statistical analysis
The significant differences between mean 
values were evaluated using one-way anal-
ysis of variance (ANOVA). Tukey’s test 
was performed with SPSS software (version 
26.0) to determine whether there were any 
statistically significant differences at the p< 
0.05 level.
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Results
The macroalga O. caspica (Fig. 3) was 

identified based on its morphological char-
acteristics using microscopic images of in-
ternal structures and external morphological 
features (Rousseau et al., 2017) (Fig. 4).
The quantitative comparison of phycobilins 
indicates that PE had the highest concen-
tration, with an average of 0.0453 mg/mL, 
followed by PC at 0.0067 mg/mL and APC 
at 0.0018 mg/mL, respectively (Figure 5). 
The yield of PBPs varied according to the 
extraction conditions: 1.05–1.76 mg/g (Ta-
ble 1).
The results of one-way ANOVA showed 
that the differences in the mean concentra-
tions (Table 1) and purity levels (Table 2) 
of phycobiliproteins among the extraction 
methods were statistically significant at the 
0.05 level. For concentrations of phycocy-

anin (F:3.551, df: 5, P< 0.05), allophyco-
cyanin (F: 23.984, df: 5, P< 0.05), phyco-
erythrin (F: 23.685, df: 5, P< 0.05), total 
phycobiliproteins yield (F: 18.489, df: 5, P< 
0.05), purity of phycocyanin (F: 16.109, df: 
5, P< 0.05), allophycocyanin (F: 34.155, df: 
5, P< 0.05) and phycoerythrin (F: 25.353, 
df: 5, P< 0.05). 
According to the results presented in Table 
1, the combination of the freeze–thaw pre-
treatment and 150 mM PBS as the extraction 
solvent was significantly more effective for 
phycocyanin (PC) compared to other meth-
ods. In the case of allophycocyanin (APC), 
the freeze–thaw pretreatment combined with 
distilled water yielded the highest recovery. 
For phycoerythrin (PE), the freeze–thaw 
pretreatment in combination with both dis-
tilled water and 150 mM PBS demonstrated 
superior performance relative to the other 
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extraction approaches. Overall, the freeze–
thaw pretreatment coupled with distilled 
water—and to a lesser extent with 150 mM 
PBS—proved to be more efficient than other 
extraction methods for the total recovery of 
phycobiliproteins.

According to Table 2, the purity of phyco-
erythrin (PE), consistent with the concentra-
tion results, was significantly higher when 
the freeze–thaw pretreatment was combined 
with either distilled water or 150 mM PBS, 
compared to the other extraction methods. 
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In contrast, the highest purity was achieved 
for allophycocyanin (APC) using ultrasonic 
pretreatment in combination with distilled 
water. A comparative evaluation of the ob-
tained results with previous studies on red 
macroalgae is presented in Table 3.

Discussion and Conclusion
According to existing scientific reports, 

O. caspica is the only confirmed species of 
red macroalgae along the southern coasts of 
the Caspian Sea (Eshaghzadeh et al., 2023). 
For many years, the red macroalga of the 
Southern Caspian Coast was considered a 
species of the genus Laurencia. However, 
a molecular study conducted in Azerbai-
jan led to the reassignment of this species 
from Laurencia to Osmundea (Rousseau et 
al., 2017). Despite this taxonomic revision, 
no molecular studies have been conducted 
on this species along the Iranian coasts of 
the Caspian Sea. This highlights a research 
gap, suggesting the necessity of molecular 
investigations to confirm its classification in 
Iranian waters. Furthermore, there is signif-

icant potential for broader research efforts 
aimed to exploring additional species of 
red macroalgae along the Southern Caspian 
Coastline.
The absorption spectra of PBPs may vary 
significantly among different species of 
algae and cyanobacteria, and even between 
strains of the same cyanobacterial genus. 
Therefore, specific wavelengths and 
absorption coefficients used to determine 
phycobilins for particular strains are 
generally not applicable to other strains 
(Zavřel et al., 2018). This study is no 
exception in this regard; however, it utilizes 
the standard methods from previous studies, 
with an awareness of the potential errors 
specific to the species O. caspica. The 
optimal extraction method depends on 
the type of phycobiliprotein, the type of 
algae, and the operational conditions. One 
common approach for extracting molecules 
is the use of solvents. PBPs are hydrophilic 
proteins. Therefore, common solvents used 
for their extraction are water or buffers, 
which also serve to control the pH of 
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the environment. These solvents include 
sodium phosphate buffer, acetate buffer, 
citrate buffer, carbonate buffer, Tris-HCl 
buffer, and ethylenediaminetetraacetic acid 
(EDTA) (Kovaleski et al., 2022). Sharmila 
et al. (2017) tested extraction methods using 
various buffers and pH levels, demonstrating 
that phosphate buffer (pH 7.2) combined with 
freeze-thawing at temperatures between -20 
°C and -25 °C yielded the best results. Sintra 
et al. (2021) used phosphate buffer for C-PC 
extraction and reported a 90% recovery rate. 
Nguyen et al. (2016) compared different 
concentrations of phosphate buffer (20 
mM, 50 mM, and 0.1 M) with tap water 
and distilled water, finding that the 20 mM 
phosphate buffer with pH 7.1 showed the 
best results for PE in Mastocarpus stellatus. 
Sudhakar et al. (2015) investigated the 
extraction of PE and PC from Gracilaria 
crassa using distilled water, seawater, 
and phosphate buffer (0.1 M). The results 
demonstrated that distilled water performed 
best for extracting PE (0.35 mg/g) and PC 
(0.18 mg/g). Based on these studies, one of 
the objectives of the present study was to 
investigate the effect of the solvent on the 
extraction process. The difference in the 
amount of extracted PE compared to other 
phycobilins, as well as the relatively higher 
efficiency of distilled water as a solvent for 
extraction, aligns with the findings of similar 
studies (Sudhakar et al., 2015; Karuppannan 
et al., 2024). The superior performance of 
distilled water in extracting phycobilins 
compared to PBS solutions can be analyzed 
from several perspectives. One key factor 
is the difference in osmotic pressure 
between the extracellular environment and 

the intracellular space, which is higher in 
distilled water than in saline solutions. This 
increased osmotic pressure can lead to greater 
cell turgescence, facilitating the release 
of intracellular components. Additionally, 
PBPs are hydrophilic and exhibit higher 
solubility in pure aqueous environments like 
distilled water compared to saline solutions. 
Furthermore, extraction techniques such 
as ultrasonication and freeze-thaw cycles 
may be more effective in distilled water, 
as its salt-free and purer nature prevents 
interference from ionic interactions, thereby 
enhancing the efficiency of the extraction 
process. On the other hand, the freeze–thaw 
pretreatment, which has been employed 
in most similar studies, has proven to 
be a more efficient method compared to 
ultrasonication. Although Pereira et al. 
(2020) and Mittal et al. (2019) reported 
favorable outcomes for ultrasonication or its 
combination with maceration, their findings 
focused on specific red algae species and 
may not be generalized to all biomass 
types. Moreover, in studies such as that 
by Sharmila et al. (2017), the freeze–thaw 
method—particularly at lower temperatures 
(−20 °C to −25 °C)—showed comparable or 
superior performance in terms of pigment 
recovery. In our experimental conditions, 
the freeze–thaw method not only provided 
higher purity and yield of phycobiliproteins 
but also preserved their structural integrity 
more effectively. Additionally, it required 
no special equipment and maintained a 
gentle processing environment, minimizing 
the risk of denaturation. Accordingly, the 
present study identifies the freeze–thaw 
pretreatment combined with distilled water 
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as the most effective overall approach 
for phycobiliprotein extraction. Factors 
influencing the extraction of phycobilins 
include species potential, initial preparation, 
and the type of solvent-extraction protocol. 
Numerous studies have examined and 
confirmed the significance of each of these 
factors (Lijassi et al., 2024; Eshaghzadeh et 
al., 2023; Sudhakar et al., 2015; Karuppannan 
et al., 2024). The findings of the present 
study are no exception to these three 
factors. Hence, to improve the extraction 
of phycobilins, broader comparative studies 
across different species, initial preparation 
processes, and more refined modifications 
in the choice of solvent or protocol are 
suggested. Given the high demand for 
PBPs in various industries, research and 
development in improving extraction and 
purification methods continues to ensure 
the sustainable and economic utilization of 
these natural resources.
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