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Abstract
Water and soil pollution represents a fundamental human issue globally. Heavy metals are 

one of the basic pollutants of water and soil, which can be caused and intensified by anthro-
pogenic activities, including mining, transportation, and various industries. Due to the toxic 
effects of these metals on the environment, organisms, and human health, the removal or re-
covery of these elements from polluted environments is of particular importance. Different 
methods and techniques have been applied to remove these pollutants, among which, biore-
mediation has received considerable attention due to its eco-friendly and cost-effectiveness. 
Bioremediation uses the ability of varoius organisms to decrease or remove pollutants. Algae 
are among the organisms that show significant capabilities in removing different types of con-
taminants, especially heavy metal ions. Phycoremediation is an application of algae as bio-re-
mediate agents, and depends on factors such as light, temperature, pH, type of pollutant, and 
type of taxon. Various strains are known for their ability to remediation of heavy metals. The 
most basic methods in removing pollutants using algae are biosorption into the cell (absorp-
tion) and surface biosorption (adsorption), which uses the living or non-living mass of algae. 
New techniques, such as using transgenic microalgae, are among the effective detoxifying and 
rapidly growing methods. Genetic engineering for algae gene editing and gene silencing ben-
efits various technologies and tools such as reporter genes, Cre-lox recombination, and CRIS-
PR-Cas systems, modular cloning toolkits, regulatory elements, promoters, vectors, restriction 
enzymes, and post-transcriptional gene silencing technologies. Other novel techniques whose 
future on an industrial scale seems promising are the combined use of microalgae and bacteria, 
biochar addition, and biogenic nanomaterials generated from algae. These innovative methods 
offer sustainable and cost-effective solutions for environmental pollution, therefore boosting 
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Introduction
Environmental pollution is considered 

one of the most critical issues around the 
world. Due to the rapid expansion of urban-
ization, industrialization, manufacturing, 
and production of hazardous by-products, 
this problem is getting worse by the day and 
ultimately endangers environmental sus-
tainability and human health (Rahman et al., 
2021). Heavy metals (HMs) are regarded as 
one of the most considerable pollutants in 
soil and aquatic ecosystems (Ahmad et al., 
2021). The natural weathering of minerals, 
as well as recent industrial and anthropo-
genic activities, led to the discharge of sig-
nificant levels of HMs into the environment 
(Malik and Kaur Sandhu, 2023). Mining, 
smelting, and refining processes produce 
enormous amounts of contaminants and 
HMs, which could be distributed through 
the air and negatively affect the nearby ar-
eas (Izydorczyk et al., 2021). Furthermore, 
industrial emissions and automotive indus-
tries, fossil fuels, sewage sludge, household 
activities, and excessive use of pesticides 
and insecticides significantly contribute to 
polluting the environment with HMs (Briffa 
et al., 2020) (Fig. 1). Contamination of the 
terrestrial and aquatic ecosystems with HMs 
poses a significant hazard to the environ-
ment and therefore human health as a result 
of direct toxic impacts on living organisms 

and further potential for increased exposure 
along the food chain (Huang et al., 2018). 
Numerous severe health conditions, includ-
ing cancer, lung adenomas, kidney failure, 
neurological disorders, inhibition of enzyme 
activity, and infertility, are among the ail-
ments caused by HM exposure (Alengebawy 
et al., 2021; Żukowska and Biziuk, 2008).
The rising content of HMs, their persistence 
in the environment, and potentially deleteri-
ous effects on ecological and human health 
demand effective remediation technologies. 
There are several methods for removing 
HMs from contaminated environments, in-
cluding water and soil. Traditional meth-
ods such as ion exchange, chemical pre-
cipitation, coagulation, conventional and 
advanced oxidation, ultrafiltration, and elec-
trochemical removal have some limitations 
like usability for limited metal ions, con-
suming higher energy and chemicals, and 
producing a considerable amount of sludge/ 
solid waste (Razzak et al., 2022). Therefore, 
developing more effective and environmen-
tally friendly solutions is very important. 
Today, the emergence of affordable methods 
in which no cutting-edge technology is re-
quired have attracted substantial attention 
as these methods are economically feasible 
for developed and developing countries. 
Among the new technologies used to reduce 
HMs is bioremediation, which has received 
greater attention from various communities 

public health. Studies on the development and implementation of these techniques are ongoing 
in the world. In this paper, the ability of 78 algae species to remove 18 heavy metals has been 
reviewed. 

Keywords: Absorption, Bioremediation, Heavy metals, Phycoremediation, Transgenic mi-
croalgae



73

Plant, Algae, and Environment, Vol. 9, Issue 2, June 2025

because of its low-cost, simple technology, 
and availability. 
Bioremediation is a  process that applies 
organisms’ potential to clean up environ-
mental contamination, such as wastewater, 
ground or surface waters, sediments, and 
soils (Boopathy, 2000). The bioremedia-
tion technique uses bacteria, fungi, plants, 
and algae to break down, remove, change, 
immobilize, or detoxify different chemicals 
and physical pollutants from the ecosystem 
(Bala et al., 2022). When biological agents 
interact with pollutants, bioremediation oc-
curs spontaneously without the aid of any 
chemical catalysts. To facilitate and speed 
up the bioremediation process, it is vital to 

generate the optimum environmental condi-
tions (Verma and Jaiswal, 2016). The char-
acteristics of the contaminated site have a 
great impact on the bioremediation process. 
The bioremediation process is influenced 
by various factors, including soil texture, 
permeability, pH, water-holding capacity, 
temperature, nutrients, and oxygen content 
(Boopathy, 2000). 
Phycoremediation, the application of al-
gae to remove contaminants from the envi-
ronment, is recognized as an effective and 
affordable bioremediation technique. Mi-
croalgae are recognized as effective biore-
mediation agents in soil due to their rapid 
growth, large surface area, strong affinity 
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for metal binding, high tolerance for vari-
ous contaminants, and eco-friendly nature 
(Chugh et al., 2022; Yeheyo et al., 2024). 
They utilize natural metabolic processes 
through techniques such as bioconcentration 
and volatilization to detoxify and remediate 
polluted soils effectively. Their effective-
ness lies in their ability to accumulate and 
degrade contaminants within their cellular 
structures. Furthermore, microalgae release 
exudates that support the growth of benefi-
cial microorganisms in the soil, enhancing 
soil health and resilience (Yeheyo et al., 
2024). Phycoremediation of water systems 
is primarily recognized for its ability to pu-
rify water contaminated with HMs and/ or 
other pollutants; however, it can be inte-
grated into a broader bioremediation strat-
egy that benefits both aquatic and terrestrial 
environments. Since the biomass produced 
by algae following the phycoremediation 
is used as feedstock to generate biofuel and 
other valuable products, algal-based biore-
mediation is strongly favored (Razaviarani 
et al., 2022)such as wastewater treatment 
and bioenergy industries. Microalgae are 
mixotrophic microorganisms that have po-
tential to utilize nitrogen and phosphate (nu-
trients. Therefore, this review encompases 
the current research, advancements, and 
modern approaches in the phycoremediation 
of heavy-metal-polluted environments. 
Phycoremediation of HMs
Algae are considered a new biological step 
that is a permanent, environmentally friend-
ly, and affordable procedure for environ-
mental protection (Touliabah et al., 2022). 
The merits of bioremediation based on algae 
are better production of biomass and high-

er aggregation ability, detoxification, and 
degrading xenobiotics and contaminants. 
Moreover, the produced biomass during 
bioremediation is cost-efficient in the field 
of clean energy.
Different species of algae, including macro- 
and micro-algae, diatoms, and cyanobacte-
ria, can remove pollutants from soil and wa-
ter. As an example, the ability of Neochloris 
aquatica in removing HMs including chro-
mium (Cr) (88.7%), lead (Pb) (75.9%), nick-
el (Ni) (87.6%), cadmium (Cd) (60.4%), co-
balt (Co) (52.9%), zinc (Zn) (84.9%), and 
copper (Cu) (54.4%) is considerable (Tamil 
Selvan et al., 2020). The study conducted 
by Ajayan et al. (2015) revealed the im-
portant effect of Scenedesmus sp. on reduc-
ing the HM pollution of Zn (65–98%), Pb 
(75–98%), Cu (73.2–98%), Cr (81.2–96%), 
and nutrients such as phosphate (>95%) and 
nitrate (>44.3%). Marine macroalgae such 
as Caulerpa lentillifera can also be used as 
inexpensive adsorbents to remove Cd, Cu, 
Zn, and Pb from aqueous solutions (Apira-
tikul and Pavasant, 2006). Table 1 lists 78 
microalgae strains with the ability to biore-
mediate 18 HMs. 
Diatoms, another group of microalgae, can 
bioremediate diverse forms of effluents 
due to their cellular structure and adaptive 
techniques. It may absorb and use different 
micro- and macro-elements (Marella et al., 
2020). Cylindrotheca closterium be able to 
remove phthalate acid esters (PAEs) from 
surface sediments (Gao and Chi, 2015).  
Moreover, the herbicide mesotrione (an ar-
omatic ketone) can be absorbed by Halam-
phora (Amphora) coffeiformis (Valiente 
Moro et al., 2012). Nitzschia sp., another 
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diatom genus, causes fast decomposition of 
organic matter by enhancing aerobic bacteri-
al activity (Yamamoto et al., 2008). Besides, 
Nitzschia sp. and Skeletonema costatum can 
degrade the highly toxic polyaromatic hy-
drocarbons (PAHs) from sediments (Hong 
et al., 2008).
Some reports on the biodegradation of pesti-
cides by algae can be found in the literature 
(Megharaj et al., 2000, 1994, 1987). El-Best-
awy et al. (2007) illustrated the ability of the 
strains Synechococcus, Oscillatoria, Nostoc, 
Cyanothece, and Nodularia in degrading of 
the pesticide Lindane (chlorinated aliphat-
ic pesticide). Kuritz and Wolk (1995) also 
reported the ability of Nostoc ellipsospo-
rum and Anabaena sp. to degrade Lindane. 
Moreover, soil isolates of Chlorella vulgar-
is, Synechococcus elongatus, Tetradesmus 
obliquus (Scenedesmus bijugatus), Leptol-
yngbya tenuis (Phormidium tenue), Leptol-
yngbya (Phormidium) foveolarum, Kamp-
tonema animale (Oscillatoria animalis), 
Desmonostoc (Nostoc) muscorum, and Nos-
toc linckia can detoxify and break down the 
organophosphate insecticides (Megharaj et 
al., 1994, 1987). 
Acid mine drainage bioremediation using 
algae  
Acid Mine Drainage (AMD) is considered 
an important source of HM pollution around 
the world that endangers species of plants, 
animals, and human life (Samal et al., 2020). 
Different strains of algae, especially mi-
croalgae, are used as a cost-efficient way of 
removing HMs these days. Some genera and 
species, such as Spirulina, Scenedesmus, 
Chlorella, Cladophora, Anabaena, Oscil-
latoria, Stigeoclonium, Phaeodactylum tri-

cornutum, non-living Caulerpa lentillifera, 
Ulothrix zonata, and Turbinaria ornate, are 
among the hyper-accumulator and hyper-ad-
sorbent microalgae from AMD. They also 
produce a lot of alkalinities, which is im-
portant during HM precipitation treatment 
(Apiratikul and Pavasant, 2006; Bwapwa et 
al., 2017; Kandasamy et al., 2021). The life-
less biomass of Spirulina sp. can absorb Zn 
(86–98%), iron (Fe) (100%), Cu (38–76%), 
and Pb (40–78%) and decrease the acidity of 
AMD by enhancing the pH, as AMD has the 
acidic nature (Bwapwa et al., 2017). Stigeo-
clonium spp. are freshwater algae that can 
thrive in mine water containing high lev-
els of HMs, particularly Zn, and are recog-
nized for their effectiveness in removing Zn 
from the environment (Pawlik-Skowrońska, 
2001).
The bioremediation mechanism of algae 
Algae from various species can be used to 
break down organic contaminants. HM re-
moval from the environment can also be 
accomplished through bioremediation. It is 
worth mentioning that the terms bioreme-
diation and biodegradation are increasingly 
interchangeable (Singh, 2019). However, 
biodegradation is considered a natural pro-
cess in nature, while bioremediation is com-
monly controlled to optimize the conditions 
for microorganisms. This process can take a 
few to several months to finish and is carried 
out in situ or ex-situ. In-situ bioremediation 
includes the remediation of pollutants at the 
site, while ex-situ involves the removal of the 
pollutants in another site (Gavrilescu, 2010). 
Ex-situ bioremediation can be employed if 
the environmental conditions are unfavor-
able for the growth of microorganisms (Al-
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ori et al., 2022)chlorosis, growth inhibition, 
root tips browning, and death of plant. Soil 
pollutants such as hydrocarbon and heavy 
metals are absorbed by crops and such ends 
up being consumed by human posing health 
risk like cancer and respiratory abnormally. 
Conventional methods of remediation such 
as chemical and physical methods are very 
expensive and not sustainable. Excavation, 
which is a type of physical method, merely 
shifts the pollutant from one site to anoth-
er. Bioremediation is a biological method of 
reclaiming polluted soils. Bioremediation 
is less expensive and more sustainable and 
safer when compared to the conventional 
methods of reclamation of polluted environ-
ment. This biological method of remediation 
is an extremely attractive, important, and 
productive alternative for cleaning, debug-
ging, managing, and rehabilitating and con-
sequently ameliorating contaminated envi-
ronments judicious utilization of microbial 
activities. The rate, at which the waste sub-
stances are degraded, is usually dictated by 

competitiveness among biological agents, 
sub-optimal supply of essential nutrients, 
unconducive abiotic conditions (in forms 
of temperature, aeration, pH, and moisture. 
It usually included biological augmentation 
(bioaugmentation), during which some se-
lected strains of microorganisms are added 
to the process to accelerate the breakdown 
of a pollutant (Herrero and Stuckey, 2015). 
Algae species take the HMs by biosorption 
and bioaccumulation (Singhal et al., 2021). 
During biosorption, certain living/non-liv-
ing microorganisms or biomass can passive-
ly concentrate and bind pollutants onto their 
cellular structure through the physiochemi-
cal process and immobilize them (Volesky 
and Holan, 1995). In other words, biosorp-
tion is the term used to describe the capacity 
of biological materials to ingest HMs phys-
ically or chemically from wastewater (Fard 
et al., 2011). While bioaccumulation is car-
ried out in the following stages of biosorp-
tion and involves living organisms (Hlihor et 
al., 2017). Bioaccumulation and biosorption 
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are subcategories of bioremediation. During 
biosorption, metals are retained through in-
teractions with functional groups on the cell 
surface (e.g., adsorption, ion exchange). 
This process can be affected by variables, 
including ionic strength, environmental 
acidity, biomass concentration, temperature, 
particle size, and other ions (Pagnanelli et 
al., 2003; Vilar et al., 2005). It can occur 
with both living and non-living biomass, as 
it does not depend on cell metabolism. In 
contrast, bioaccumulation involves both in-
tra- and extracellular processes. Therefore, 
only live biomass can perform bioaccumu-
lation (Coelho et al., 2015). Algae species 
often filter nutrients, heavy metals (depend-
ing on the species), and other minerals from 
wastewater through a combination of bio-
sorption and their ability to absorb, adsorb, 
and bioaccumulate. Since these species need 
nutrients to grow, algae growth occurs as 
these elements are removed from wastewa-
ter. Some are absorbed by outer cells, while 
others are absorbed by inner cells (Bwapwa 

et al., 2017) (Fig. 2).
Most algae species (e.g., Euglena sp., 
Scenedesmus sp., Oscillatoria sp., Chlorel-
la sp.) absorb contaminants and immobilize 
them within their cell structure; these mi-
croalgae biomass can later be used as ener-
gy-enriched biomass for biofuel generation 
(Kandasamy et al., 2021).
In some strains, HMs or other nutrients 
with positive charges are clasped negative-
ly charged groups (e.g., —OH/ hydroxyl, 
—COOH/ carboxyl, —SH/ sulphydryl, —
NH2/ amino, —PO3H2/ phosphoryl) on the 
surface layer of the cell wall (adsorption) 
(Spain et al., 2021). While in several mi-
croalgae, these pollutants are taken into the 
algae cell (absorption) (Gündoğdu and Türk 
Çulha, 2023). These algae accumulate HMs 
in their intercellular regions or their vacuoles 
(Torres, 2016). Spirogyra algal species had a 
removal efficiency of 20 mg/L Cu (II) (58-
85%) at 30 minutes (Bishnoi et al., 2004). 
Cladophora glomerata and Oedogonium 
rivulare are among the species with the abil-
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ity to remove Co, Pb, Ni, Mn, Cd, Cr, Cu, 
and Fe from contaminated water (Vymazal, 
1984). Ulothrix zonata and Turbinaria or-
nata are also considered great adsorbents of 
HMs (Nuhoglu et al., 2002; Vijayaraghavan 
et al., 2005).
Factors affecting phycoremediation
Algae can remove HMs in a variety of ways. 
This process depends on the metal type, tax-
on, pH, light, and temperature (Mehta and 
Gaur, 2005; Novis and Harding, 2007). As 
algae are sensitive to light and tempera-
ture, the efficiency of phycoremediation can 
also be affected through different seasons. 
For example, the best time to remove HM 
sand contamination by algae is variable de-
pending on the season (Brake et al., 2004; 
Elbaz-Poulichet, 2000). The strain of algae 
is also important in the process of phycore-
mediation. Some strains are more resistant 
to pollutants and have a higher ability to de-
toxify the HMs. An ecological study of soil 
in polluted sites with insecticides shows the 
replacement of sensitive species with resis-
tant species (Megharaj et al., 1999). As pre-
viously mentioned, the non-living biomass 
of microalgae has the ability to adsorb pol-
lutants. It was revealed that the biomass of 
non-living algae adsorbs a higher amount of 
metals than that of living algae (Mehta and 
Gaur, 2005). 
Methods to increase the efficiency of HM re-
mediation by algae
To increase the efficiency of phycoremedi-
ation, some modern technologies have been 
developed in recent years. Chemical and 
molecular techniques are among the meth-
ods being used in this regard to manage al-
gae to boost their productivity.

Transgenic algae to improve bioremediation 
Genetic engineering for algae gene editing 
and gene silencing benefits various tech-
nologies and tools such as reporter genes, 
Cre-lox recombination, and CRISPR-Cas 
systems, modular cloning toolkits, regulato-
ry elements, promoters, and vectors, restric-
tion enzymes, and post-transcriptional gene 
silencing (PTGS) technologies (Fajardo et 
al., 2020). Data required for finding the ap-
propriate genes to manipulate genetically is 
supplied by multi-omics approaches, includ-
ing data of proteomics, transcriptomics, ge-
nomics, interactomics, and metabolomics, 
for various strains of algae, and is freely ac-
cessible on different online platforms (Ran-
jbar and Malcata, 2022)due to accelerated 
anthropogenic activities, and is nowadays, 
a matter of serious global concern. Remov-
al of such inorganic pollutants from aquatic 
environments via biological processes has 
earned great popularity, for its cost-effec-
tiveness and high efficiency, compared to 
conventional physicochemical methods. 
Among candidate organisms, microalgae 
offer several competitive advantages; phy-
coremediation has even been claimed as 
the next generation of wastewater treatment 
technologies. Furthermore, integration of 
microalgae-mediated wastewater treatment 
and bioenergy production adds favorably to 
the economic feasibility of the former pro-
cess—with energy security coming along 
with environmental sustainability. Howev-
er, poor biomass productivity under abiot-
ic stress conditions has hindered the large-
scale deployment of microalgae. Recent 
advances encompassing molecular tools for 
genome editing, together with the advent of 
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multiomics technologies and computation-
al approaches, have permitted the design of 
tailor-made microalgal cell factories, which 
encompass multiple beneficial traits, while 
circumventing those associated with the 
bioaccumulation of unfavorable chemicals. 
Previous studies unfolded several routes 
through which genetic engineering-mediat-
ed improvements appear feasible (encom-
passing sequestration/uptake capacity and 
specificity for heavy metals.
Transporters of HMs in algae cell mem-
branes are important options in genetic en-
gineering. These membrane proteins, which 
are responsible for the transportation and 
tolerance of metals, basically Co, Cd, Fe, 
Ni, Mn, and Zn, are known as metal-tol-
erance proteins (MTP) (Ram et al., 2019). 
Some species of microalgae, including Mi-
crocystis aeruginosa, Spirulina sp., Syn-
echococcus sp., Nostoc sp., Anabaena flos-
aquae, and Fischerella, carry MTP genes. 
These genes, which are involved in the reg-
ulation of metal ion storage, are expressed 
in response to higher concentrations of HMs 
like Cu (Kandasamy et al., 2021). Different 
families of MTP genes are known in Chlam-
ydomonas. More than eleven gene families 
are responsible for encoding the metal ion 
transporters (Rajamani et al., 2007). Up-
regulation of CRMTP4, which encodes the 
metal transporter, enhances the tolerance of 
Chlamydomonas reinhardtii to the toxicity 
of Cd; these microalgae strains with upreg-
ulated CRMTP4 had 2.81-3.06 times higher 
ability in bioaccumulation of Cd in com-
parison to wild Chlamydomonas reinhardtii 
(Ibuot et al., 2017).
However, the authors indicated that waste-

water-adapted strains, Parachlorella kes-
sleri, Parachlorella hussii, and Jaagichlo-
rella (Chlorella) luteoviridis, had also higher 
tolerance to Cd, Zn, Al, and Cu than the 
wild strain of Chlamydomonas reinhardtii. 
These three microalgae also revealed higher 
tolerance and bioaccumulation of Cd than 
the upregulated CRMTP4 Chlamydomonas 
reinhardtii. This indicated clearly that the 
mechanisms of adapted strains, which can be 
attributed to their oxidative stress tolerance 
and upregulation of several genes, over-
come the upregulation of a single MTP gene 
(Ibuot et al., 2017), and therefore, producing 
transgenic microalgae with multi-metal tol-
erance and absorption should be prioritized 
in genetic engineering of algae.
In Auxenochlorella protothecoides, high 
expression of metal transporter genes, the 
Nramp family, has been shown under Cd 
stress (Lu et al., 2019). These genes also 
play a role in Cd tolerance of Chlamydo-
monas acidophila (Puente-Sánchez et al., 
2018). In Chlamydomonas reinhardtii, a 
member of the Nramp family, DMT1, is re-
sponsible for the transportation of Cd, Cu, 
Fe, and Mn (Rosakis and Köster, 2005). 
Moreover, it seems that MTP1 in Chlam-
ydomonas reinhardtii encodes the vacuolar 
membrane protein which plays a critical role 
in detoxification of Cd and homeostasis of 
Zn (Blaby-Haas and Merchant, 2012). Phos-
phate transporters in Microcystis aeruginosa 
play a role in accumulation of arsenate (As)  
due to similar chemical structure of organic 
phosphate and As, lead to indiscrimination  
between these two elements (Wang et al., 
2019).
Expression of acr3 gene, which encodes 
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protein ACR3 present in vacuole membrane 
of Pteris vittata and involved in bioaccu-
mulation of As, in Chlamydomonas rein-
hardtii resulted in 1.5-3 times enhancement 
of As accumulation; the ability of this re-
combinant strain in bioaccumulation of As 
was even higher in environment with re-
duced phosphate (Ramírez-Rodríguez et al., 
2019). Microalga Euglena gracilis exposed 
to Cd, Hg, and Pb revealed an enhancement 
in membrane transporter Major Facilita-
tor Superfamily, P(1B)-type ATPases, Cd/
Zn-transporting ATPase, as well as pro-
teins participating in microalgae stress re-
sponse and thiol-rich proteins which play 
an important role in metal chelation, at pro-
teome level (Khatiwada et al., 2020). Cell 
surface engineering can also be employed 
to enhance the algae-based bioremediation 
of HMs. Transgenic Chlamydomonas rein-
hardtii due to plasma membrane-anchored 
metallothionein polymer expression re-
vealed enhanced capacityfor Hg (II) binding 
compared to wild strains (He et al., 2011).
It has also been shown that microalgae under 
HM stress upregulate particular HM-binding 
organic molecules in order to reduce the HM 
toxicity through the formation of chelated 
forms (Balzano et al., 2020). Transformed 
Chlamydomonas reinhardtii with increased 
synthesis of cysteine (HAL2 gene) revealed 
5-times enhancement in metal binding ca-
pacity (Rajamani et al., 2007; Ranjbar and 
Malcata, 2022)due to accelerated anthropo-
genic activities, and is nowadays, a matter 
of serious global concern. Removal of such 
inorganic pollutants from aquatic environ-
ments via biological processes has earned 
great popularity, for its cost-effectiveness 

and high efficiency, compared to conven-
tional physicochemical methods. Among 
candidate organisms, microalgae offer sev-
eral competitive advantages; phycoremedia-
tion has even been claimed as the next gener-
ation of wastewater treatment technologies. 
Furthermore, integration of microalgae-me-
diated wastewater treatment and bioenergy 
production adds favorably to the economic 
feasibility of the former process—with ener-
gy security coming along with environmen-
tal sustainability. However, poor biomass 
productivity under abiotic stress conditions 
has hindered the large-scale deployment of 
microalgae. Recent advances encompassing 
molecular tools for genome editing, together 
with the advent of multiomics technologies 
and computational approaches, have permit-
ted the design of tailor-made microalgal cell 
factories, which encompass multiple benefi-
cial traits, while circumventing those asso-
ciated with the bioaccumulation of unfavor-
able chemicals. Previous studies unfolded 
several routes through which genetic engi-
neering-mediated improvements appear fea-
sible (encompassing sequestration/uptake 
capacity and specificity for heavy metals. 
Moreover, the engineering of microalgae to 
enhance the activity of particular enzymes to 
tolerate HM can be effective. For example, 
in Chlorella vulgaris chromate reductase 
play a role in the reducing toxic of Cr (VI) 
to the less dangerous trivalent chromium (Cr 
(III)). Therefore, it enhances the tolerance of 
microalgae cells against Cr toxicity (Yen et 
al., 2017).  
Biochar addition for optimizing the phy-
coremediation 
As biochar is enriched with nutritional com-
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ponents, a combination of biochar made 
from plant biomass with microalgae could 
aid in the cleanup of HMs and other hazard-
ous materials. Microalgae may use biochar 
nutrients to boost their biomass. The biore-
mediation process is carried out simultane-
ously by biochar and metal-tolerant algae. 
This promising and long-term technique 
could result in more efficient phycoreme-
diation with energy-containing biomass of 
microalgae. With the appropriate energy 
conversion method, this energy-enriched 
biomass of microalgae is able to generate 
a greater volume of ethanol (Anae et al., 
2021).
Biogenic nanomaterials generated from al-
gae
Biogenic nanoparticles are those that are 
produced using biological organisms. Bi-
ologically produced nanoparticles have 
emerged as a viable substitute for chemi-
cally synthesized nanoparticles due to their 
nontoxicity. Several biogenic nanoparticles 
have been produced in recent years with 
possible applications in medicine and envi-
ronmental cleanup. Biogenic nanoparticles 
like palladium nanocrystals, nano-magnets, 
biogenic manganese oxide (BioMnOx), and 
biogenic iron species have been shown to be 
successful at removing a variety of micro-
pollutants, HMs, refractory pollutants, and 
halogenated chemicals. Nano-bioremedia-
tion has the potential to be a more effective, 
safer, environmentally friendly, and cost-ef-
ficient technology, with a significant long-
term impact on the field of environmental 
remediation (Kumari et al., 2019). 
Algal nanocomposites reveal novel mate-
rials that mix algae-based polymers with 

nanoparticles. One of the main applications 
of these nanocomposites is in the remediation 
of wastewater. The application of alginate, 
derived from algae, as the base material in 
wastewater treatment is a green alternative 
to conventional fossil-fuel-based treatment 
methods (Lakshmi et al., 2023). Researchers 
have developed a Fucus vesiculosus-based 
sorbent for the effective removal of HMs, 
including Pb (II), Cd (II), Cu (II), and Zn 
(II) from polluted waters (Demey et al., 
2018). Moreover, the ability of algal-made 
nanocomposites for the removal of Cr (VI) 
and iron compounds has been approved (Wu 
et al., 2018). In another research, a higher 
ability of Sargassum glaucescens and chi-
tosan/polyvinyl alcohol (PVA) nano-fiber 
membrane at pH 6 for biosorption of Ni in 
a continuous system has been shown (Es-
maeili and Aghababai Beni, 2018). The 
world nanomaterials market, including algal 
nanocomposites, reached 10.88 billion US 
dollars in 2022 and is projected to show a 
14.8% growth by 2030 (Yuan et al., 2023). 
Algae and bacterial consortia
Microalgae combine with other aerobic or 
anaerobic microorganisms to form a mi-
crobial community. Compared with a sin-
gle microorganism, a combination of algae 
and bacteria can work together to eliminate 
organic and inorganic pollutants. The com-
bined use of microalgae and bacteria can be 
complementary and synergistic to obtain 
better pollutant degradation efficiency (Fu 
and Secundo, 2016). For instance, consortia 
of algae and bacteria mix revealed a signif-
icant removal rate of 92.6% for 1,2-dichlo-
roethane from the petroleum industry (Al-
hajeri et al., 2024). On the one hand, algae 
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photosynthesis produces oxygen, which is a 
key electron acceptor for heterotrophic bac-
teria to break down pollutants into organic 
matter. On the other side, bacteria provide 
carbon dioxide and other stimulating media 
to support the photosynthetic autotrophic 
growth of their partners (Subashchandrabose 
et al., 2011). The mixing of different strains, 
i.e., algae-bacteria, can produce a synergistic 
effect, and the microbial population usually 
acts more effectively than a single strain or 
species. Some advantages of co-cultivation 
are the robustness to environmental fluctu-
ations, the stability of the limbs, the abili-
ty to survive periods of nutrient limitation, 
to share metabolites, and resistance against 
other species. The self-oxidation of these 
natural systems that have been tested is ben-
eficially used to remediate many pollutants 
(Muñoz and Guieysse, 2006). Compared 
with traditional engineering technology, it 
is more economically and technologically 
superior (Subashchandrabose et al., 2013). 
Contemporary molecular technology, com-
bined with the careful selection of specific 
members of the microbial community, will 
enable the creation of autonomous systems 
that serve the dual purpose of contaminant 
removal and metabolite production. 
The bacteria-algae complex is effective in 
dealing with harmful pollutants, and their 
efficiency in the bioremediation of HMs has 
been established (Boivin et al., 2007). The 
normal growth and metabolism of algae re-
quire small amounts of various metals, but 
higher levels of the same metals are toxic. In 
this way, algae communities in symbiotic in-
teractions can absorb and detoxify the met-
als. The process of detoxification involves 

physical or chemical adsorption, active ab-
sorption into the cell for a small amount, 
covalent bonding, ion exchange, surface 
precipitation, redox reaction, or cell surface 
crystallization (Muñoz and Guieysse, 2006; 
Subashchandrabose et al., 2013). Besides the 
HMs, the mentioned methods can be used by 
microalgae to degrade organic contaminants 
such as black oil, naphthalene, acetonitrile, 
phenol, thiocyanate, benzopyrene, azo com-
pounds (Mahdavi et al., 2015; Muñoz and 
Guieysse, 2006; Ryu et al., 2015; Subash-
chandrabose et al., 2013), and toxic pesti-
cides including methion, quinophos, methyl 
parathion, DDT, atrazine, and α-endosulfan 
(Subashchandrabose et al., 2013, 2011).
Compared with individual microorganisms, 
microalgae and bacterial consortia can ef-
fectively detoxify inorganic and organic 
contaminants and remove nutrients from 
wastewater. The resource competition and 
pollutant reduction cooperation between 
the two microbial associations will deter-
mine the success of the consortium project 
while harnessing the biotechnology poten-
tial of the partners (Subashchandrabose et 
al., 2011).

Conclusion and perspectives
Bioremediation of polluted environments 

has attracted much attention during the last 
decades. As it is considered an eco-friendly 
and cost-effective method of treating con-
taminated water and soil, it has some advan-
tages over other known existing techniques. 
Microalgae with an excessive tolerance 
to HMs and a high capacity for metal ion 
binding are the best accumulators of metals. 
Algae species such as Chlorella, Spirulina, 
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Spirogyra, Scenedesmus, and many oth-
ers are applied for the disposal of Cr, Cu, 
Ni, Cd, Hg, Sp, Pb, and other HM ions. Al-
though using algae for bioremediation of 
HMs could encounter some problems, such 
as poor adaptability of exogenous microal-
gae with contaminated sites, and is affected 
by the intensity of light, operation time, and 
temperature, yet using various techniques, 
including ex-situ bioremediation and bio-
augmentation, can help to manage these 
limitations. Moreover, some new methods 
and technologies have been employed to 
enhance the efficiency of phycoremediation. 
Biochar addition, applying genetically engi-
neered and transgenic microalgae with MTP 
genes, and consortia of microalgae together 
or with other microorganisms, are among 
the new techniques that are rapidly growing 
to provide a greener world.
In spite of numerous advantages, some 
novel techniques encounter challenges, in-
cluding scaling up. Most phycoremediation 
processes employing genetically engineered 
algae are still confined to laboratory settings 
(Pradhan et al., 2022). The main limitations 
include low product yields and high culti-
vation costs (Wang et al., 2024). In order 
to address these challenges, it is necessary 
for future studies to focus on the expansion 
and development of universal cloning tool-
kits and rapid expression kits, which enable 
gene editing tools to be applicable to a broad 
range of microalgae (Webster et al., 2024).

Algae-bacteria consortia have a notable ad-
vantage over other monoculture techniques 
in resistance to contamination (Naseema 
Rasheed et al., 2023). This feature makes 

them suitable for application in open ponds 
(Su et al., 2022). Moreover, the partnership 
offers practical benefits in harvesting the 
biomass due to enhanced flocculation effi-
ciency when certain strains of bacteria are 
co-cultured with algae (Ravindran et al., 
2016). Recent developments have focused 
on creating optimized consortia through 
careful selection of species and engineering. 
It has been shown that identification of the 
most effective combination, with some engi-
neered consortia, achieves over 90% remov-
al for various pollutants (Cai et al., 2024). 
These systems not only perform better in 
terms of pollutant removal but also gener-
ate valuable biomass that can be used for 
various applications (Navarro and Caipang, 
2024; Torres et al., 2024).
The implementation of advanced algal 
bioremediation techniques remains pri-
marily in developmental stages, with most 
successful applications in controlled con-
ditions. A key challenge in scaling up these 
technologies is a requirement for a better un-
derstanding of how microalgae-microalgae 
or microalgae-bacteria co-culture perform 
in open systems over a long time (Al-Jabri 
et al., 2020). The future success of these ap-
plications will depend on continued research 
to optimize performance and validate long-
term effectiveness, particularly in outdoor 
conditions where environmental factors can 
significantly impact system performance 
(Al-Jabri et al., 2020). Natural symbiotic 
relationships between algae and native mi-
croorganisms show promise, particularly for 
water treatment applications, as these part-
nerships can effectively utilize carbon diox-
ide and minerals while producing oxygen 



92

Plant, Algae, and Environment, Vol. 9, Issue 2, June 2025

without generating waste products (Toulia-
bah et al., 2022). In Iran, there is inadequate 
information about the implementation of 
these methods. However, these approaches 
could be applicable in local environments.
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