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Abstract 
Calotropis procera, a medicinally and industrially valuable plant of the Apocynaceae family, 

faces challenges in propagation due to declining seed germination potential and a lack of set 
mass production methods. This study evaluates the effects of plant growth regulators, specifically 
2,4-Dichlorophenoxyacetic acidichlorophenoxyacetic acid and Thidiazuron, on callus induction, 
shoot formation, leaf development, and root induction in stem explants of C. procera. Tissue 
culture techniques were employed to address propagation challenges and conserve this species.
The highest callus induction (100%) was achieved using 7.5 mg/L 2,4-Dichlorophenoxyacetic 
acidichlorophenoxyacetic acid and 7.5 mg/L Thidiazuron, with auxins and cytokinins 
demonstrating a synergistic effect in promoting cell division. For shoot formation, the optimal 
combination was 1.25 mg/L 2,4-Dichlorophenoxyacetic acidichlorophenoxyacetic acid and 5 
mg/L Thidiazuron, while leaf formation peaked with 1.25 mg/L Thidiazuron alone. Excessive 
Thidiazuron concentrations, however, inhibited leaf formation, underscoring the importance of 
hormonal balance. Root induction was most effective with 2.5 mg/L 2,4-Dichlorophenoxyacetic 
acid and 7.5 mg/L Thidiazuron, whereas treatments with high cytokinin concentrations were 
found to hinder root growth.
These findings align with prior research on other medicinal plants, such as Catharanthus roseus 
and Calotropis gigantea, demonstrating the complementary roles of auxins and cytokinins in plant 
tissue culture. This study highlights the potential of tissue culture as a scalable and sustainable 
method for the propagation and conservation of C. procera, ensuring the preservation of its 
medicinal and industrial applications.
This study confirmed that the proper balance between auxin and cytokinin is important for the 
successful induction of each growth phase in the plant. This study highlights the potential of 
tissue culture as a scalable and sustainable method for the propagation and conservation of C. 
procera, ensuring the preservation of its medicinal and industrial applications.

Keywords: Plant tissue culture, Plant growth regulators, Hormonal synergy, Callus induction, 
Calotropis procera
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as a solution to mitigate these issues (Abasi 
et al., 2017).  
Phytohormones play a pivotal role in en-
hancing various tissue culture stages such as 
callus induction, shoot formation, and root 
formation. The auxin 2,4-Dichlorophenoxy-
acetic acid is a potent promoter of cell di-
vision and facilitates callus induction, while 
Thidiazuron, an effective cytokinin, is effi-
cient in inducing shoot and leaf formation 
(George et al., 2008). The combination of 
these two hormones can regulate hormonal 
balance, optimizing the propagation process 
under laboratory conditions (Sidik et al., 
2024; Rineksane et al., 2021).  
Therefore, this study aims to evaluate the ef-
fects of 2,4-Dichlorophenoxyacetic acid and 
Thidiazuron on callus induction and organo-
genesis in C. procera. Achieving optimal re-
sults can contribute to the mass propagation 
and conservation of this valuable species, 
preventing its potential extinction.  

Material and Methods 
Plant material

Seeds of C. procera were collected from 
the Kahnuj region in Kerman, Iran (27.9514° 
N, 57.7002° E; elevation ~435 m above sea 
level).  
Seed sterilization 
The seeds were washed with distilled water 
and then immersed in 5% sodium hypochlo-
rite solution for 15 minutes. They were lat-
er rinsed in autoclaved distilled water for 5 
minutes, followed by 2 minutes in 70% eth-
anol. Afterward, they were rinsed three more 
times in autoclaved distilled water, each 
time for 5 minutes (Lindsey et al., 2017).  
Seed cultivation and culture conditions 

Introduction 
The medicinal plant Calotropis procera 

(commonly known as the giant milkweed 
or crown flower) is a valuable species in the 
Apocynaceae family, known for producing 
important secondary metabolites such as 
cardiac glycosides and natural latex (Van 
Quaquebeke et al., 2005). It holds significant 
pharmaceutical and industrial importance 
due to its bioactive compounds and appli-
cations. Native to various regions of Iran, 
including South Khorasan, Sistan and Bal-
uchestan, Khuzestan, and Hormozgan, C. 
procera is commonly used for its medicinal 
and industrial properties (Mohebi, 2021).  
The latex of C. procera has been reported 
to possess anthelmintic (Iqbal et al., 2005), 
anti-inflammatory (Alencar et al., 2006), 
antioxidant (Chavda et al., 2010), and anti-
cancer properties (Magalhães et al., 2010). 
Additionally, its fibers are utilized in the 
textile industry, and its hydrocarbons serve 
as a potential source for biofuel production 
(Parić et al., 2011).  
Tissue culture techniques, as a branch of 
advanced biotechnological methods, pro-
vide a promising tool for the propagation 
and conservation of valuable plant species 
(García González et al., 2010). These meth-
ods not only enable the mass propagation 
of healthy plants but also offer a controlled 
environment for producing valuable second-
ary metabolites. However, in a controlled 
laboratory condition culture of plants like C. 
procera, which secrete latex, faces challeng-
es such as phenolic exudation, which can 
damage explants. Using explants like imma-
ture embryos or hypocotyls, which contain 
lower phenolic content, has been suggested 
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To induce germination and obtain sterile 
seedlings, seeds were cultivated on basal 
Murashige & Skoog medium (Murashige 
and Skoog, 1962) containing 1.25 mg/L 
2,4-Dichlorophenoxyacetic acid and 1.25 
mg/L Thidiazuron. Cultures were main-
tained in a growth room under a 16-hour 
light and 8-hour dark photoperiod at 23 ± 
2°C. After three weeks, the aerial parts of 
sterile seedlings were used as explants for 
hormonal treatments.  
Hormonal treatments for explants 
A factorial experiment was conducted in a 
completely randomized design to evaluate 
the effects of 2,4-Dichlorophenoxyacetic 
acid and Thidiazuron on callus, root, and 
shoot induction. The treatments included 
five concentrations of 2,4-Dichlorophenoxy-
acetic acid (0, 1.25, 2.5, 5, and 7.5 mg/L) 
and five concentrations of Thidiazuron (0, 
1.25, 2.5, 5, and 7.5 mg/L), with at least 
three replicates for each treatment. Explants 
measuring 2–3 cm were excised from the ae-
rial parts of sterile seedlings under a laminar 
flow hood. Explants were placed on differ-
ent media and maintained under the same 
growth room conditions. After four weeks, 
parameters such as callus induction percent-

age, root induction percentage, root number 
per explant, shoot induction percentage, 
shoot number per explant, leaf induction 
percentage, and leaf number per explant 
were evaluated.  
Data Analysis 
The data were analyzed using SPSS soft-
ware (version 22, Allen et al., 2014). Dun-
can’s multiple range test was employed to 
compare the means.  

Results  
Ten days after culturing the explants on 

media with different hormonal treatments, 
we observed callus formation, shoot induc-
tion, and root induction. 
Callus Induction
The highest callus induction rate (100%) 
occurred with 7.5 mg/L Thidiazuron and 
7.5 mg/L 2,4-Dichlorophenoxyacetic acid, 
highlighting the synergistic effect of these 
hormones (Figure 2). At lower concentra-
tions of 2,4-Dichlorophenoxyacetic acid (0 
and 1.25 mg/L), callus induction was sig-
nificantly reduced. 
Shoot Induction  
Optimal shoot formation was achieved with 
a combination of 1.25 mg/L 2,4-Dichloro-
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Plant growth and differentiation are nota-
bly influenced by the type and concentra-
tion of plant growth regulators and culture 
media composition. Auxins and cytokinins, 
the most commonly used plant growth reg-
ulators in plant tissue culture, play crucial 
roles in regulating developmental pathways. 
These substances can improve the plant’s 
growth responses. For example, in the case 
of C. procera, data indicates that the use 
of 2,4-Dichlorophenoxyacetic acid is nota-
bly more effective for callus induction than 
Naphthaleneacetic acid or Indole-3-acetic 
acid. Moreover, the cytokinin-to-auxin ratio 
in this process is crucial and influences cal-
lus growth and plant regeneration (Tripathi 
et al., 2013).  
This study demonstrated the synergistic ef-
fect of 2,4-Dichlorophenoxyacetic acid and 
Thidiazuron on callus induction and organ-
ogenesis in C. procera. The combination 
of 7.5 mg/L 2,4-Dichlorophenoxyacetic 
acid and 7.5 mg/L Thidiazuron achieved 
the highest callus induction (100%). The 
combined use of these hormones increased 
the expression of genes related to cell divi-
sion, supporting previous findings (Kumar 
& Reddy, 2011). These findings align with 
previous studies that demonstrate the com-
plementary roles of auxins and cytokinins in 
callus induction (George et al., 2008). The 
hormone 2,4-Dichlorophenoxyacetic acid, a 
strong auxin, promotes increased cell divi-
sion, while Thidiazuron, a phenylurea-type 
cytokinin, acts as a regulator of cellular 
development.  According to prior research, 
explants of Calotropis gigantea cultured on 
media containing a combination of BAP and 
2,4-Dichlorophenoxyacetic acid present-

phenoxyacetic acid and 5 mg/L Thidiazuron. 
Higher concentrations of 2,4-Dichlorophe-
noxyacetic acid negatively affected shoot 
formation, while low concentrations were 
more effective (Figure 3).  
Leaf Induction  
We observed the highest percentage of leaf 
formation and the maximum number of 
leaves at 1.25 mg/L Thidiazuron (Figure 
4)—increasing Thidiazuron concentrations 
above 2.5 mg/L reduced leaf formation, in-
dicating an inhibitory effect at higher con-
centrations. 
Root Induction  
We observed root formation only with the 
combined treatment of 2.5 mg/L 2,4-Dichlo-
rophenoxyacetic acid and 7.5 mg/L Thid-
iazuron, achieving a 90% success rate. On 
average, this condition produced 2.5 roots 
per explant. 

Discussion 
The native Iranian plant Calotropis 

procera, a notable member of the family 
Apocynaceae, holds special importance. 
One of the challenges in propagating the 
medicinal species C. procera is the decline 
in seed germination potential over time as 
seeds are stored longer (Galal et al., 2015). 
Furthermore, no set method exists for the 
mass production of this plant, which is 
nearing extinction. In this context, research 
and modern tissue culture techniques have 
gained attention as effective solutions to ad-
dress these challenges. Tissue culture can be 
employed for the propagation of these plant 
species, whose populations are dwindling, 
enabling production in an aseptic environ-
ment free from environmental contaminants. 
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ed callus formation, whereas explants on 
media lacking 2,4-Dichlorophenoxyacetic 
acid failed to form calluses (Muthi’ah et al., 
2023). These findings are consistent with 
the results of our experiments and under-
score the complementary and sometimes an-
tagonistic roles of auxins and cytokinins in 
regulating growth processes. Furthermore, 
the demonstrated ability to manipulate hor-
mone concentrations for optimal outcomes 
emphasizes the potential of tissue culture as 
a scalable method for the conservation and 
propagation of C. procera. Our data show 
that Thidiazuron alone cannot induce callus 
formation but enhances its performance in 
the presence of auxin. 
For shoot formation, the optimal combina-
tion was 1.25 mg/L 2,4-Dichlorophenoxy-
acetic acid with 5 mg/L Thidiazuron, while 
leaf formation peaked at 1.25 mg/L Thidi-
azuron. However, higher Thidiazuron con-
centrations inhibited leaf formation, empha-
sizing the importance of hormonal balance. 
These findings align with studies on Catha-
ranthus roseus and Calotropis gigantea (Ta-

litha et al., 2023; Dhandapani et al., 2008). 
Cytokinins such as Thidiazuron play a key 
role in this process by stimulating signaling 
pathways associated with stem meristem 
proliferation (Malik et al., 2023). 
The findings reported by Rout et al. (2000) 
underscore the critical role of cytokinins 
in enhancing leaf formation. Leaf forma-
tion occurred at a concentration of 5 mg/L 
2,4-Dichlorophenoxyacetic acid when we 
used only 2,4-Dichlorophenoxyacetic acid 
as the hormonal treatment in the culture me-
dium. According to studies (Talitha et al., 
2023) on Calotropis gigantea, leaf forma-

tion is influenced by specific concentrations 
of auxins and cytokinins. Among hormon-
al treatments, the one containing only In-
dole-3-butyric acid in the culture medium 
was found to be optimal for increasing leaf 
numbers compared to other treatments. This 
is because auxins stimulate the action of gib-
berellin hormones in increasing internode 
length, which later enhances the number 
of nodes and leaves. Agustina et al. (2020) 
have noted that both auxins and cytokinins 
have long been recognized to work syner-
gistically and antagonistically in regulating 
various key growth processes.  
Root induction required the combined 
treatment of 2.5 mg/L 2,4-Dichlorophe-
noxyacetic acid and 7.5 mg/L Thidiazuron. 
Similar results were reported for Zingiber of-
ficinale, where Thidiazuron combined with 
low auxin concentrations was most effective 
(Lincy & Sasikumar, 2010). Research find-
ings (Talitha et al., 2023) have shown that in 
Calotropis gigantea, low concentrations of 
BAP increased the number of roots formed. 
However, there was an inverse relationship 
between increased BAP concentration and 
the number of roots formed. Optimal root 
formation occurred in the absence of BAP 
treatment in the culture medium. This is 
supported by prior research by Chen et al., 
which states that high concentrations of cy-
tokinins can hinder root growth (Chen et al., 
2020).
In conclusion, modern tissue culture 
techniques, guided by a deeper understanding 
of plant growth regulator interactions, 
hold promise not only for the sustainable 
production of C. procera but also for broader 
applications in conserving other endangered 
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Abstract
Microalgae Haematococcus pluvialis and yeast Xanthophyllomyces dendrorhous are two 

microorganisms known for their ability to produce astaxanthin, a valuable carotenoid with huge 
applications in various industries. This study aimed to investigate the optimal culture medium 
for the coculture of these two species, focusing on providing appropriate nutrients for their 
growth, particularly before H. pluvialis enters the red phase. Growth curves of H. pluvialis and 
X. dendrorhous were obtained in their standard media, Bold’s Basal Medium (BBM) and Yeast 
Malt (YM) medium, respectively. Four candidate media were prepared based on BBM and YM 
constituents: BBM with glucose (BG), BBM with glucose and malt (BGM), BBM with glucose 
and peptone (BGP), and BBM with glucose and yeast extract (BGY). Cell numbers of both 
species were compared after 6 days of coculture incubation. Results showed that H. pluvialis 
exhibited the highest cell densities in BGM and BGY media, reaching 1.22×105 and 1.488×105 
cells/mL, respectively. In contrast, the highest growth of X. dendrorhous was observed in BG 
medium, with a maximum cell density of 3.8 × 105 cells/mL. BGM demonstrated the balanced 
growth for both species, while BGY resulted in the highest cell concentration for H. pluvialis 
and controlled the growth of X. dendrorhous. The study highlights the importance of select-
ing a culture medium that balances the growth of both species and ensures controlled nutrient 
competition for a productive co-culture system. These findings contribute to the development 
of efficient co-cultivation strategies to enhance the cell growth rate and productivity.

Keywords: Haematococcus pluvialis, Xanthophyllomyces dendrorhous, Co-culture, Microal-
gae, Yeast, Culture medium 

Introduction
Cultivating multiple microbial species 

under controlled conditions, known as mi-
crobial co-culture, can boost productivity 
and efficiency in various biotechnology ap-
plications. This approach promotes symbi-
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substrates (Bader et al., 2010).
Microalgae and yeast co-cultures have 
gained significant attention because of their 
potential to enhance biomass production 
and valuable compound synthesis. These in-
teractions are characterized by a symbiotic 
relationship in which microalgae act as ox-
ygen generators for yeast, while yeast pro-
vides CO2 and organic acids to microalgae 
(Arora et al., 2019). This mutually benefi-
cial arrangement can increase productivity 
and reduce cultivation costs. Studies have 
shown that co-culturing microalgae and 
yeast can substantially improve their bio-
mass and lipid production. For instance, 
a co-culture of Rhodotorula glutinis and 
Scenedesmus obliquus in a photobioreactor 
demonstrated a 40-50 % increase in biomass 
and a 60-70 % increase in total lipids com-
pared to single culture batches (Yen et al., 
2015). Similarly, a coculture of Chlorella 
pyrenoidosa and Rhodotorula glutinis at a 
3:1 ratio achieved maximum biomass con-
centration and lipid productivity, with total 
fatty acid productivity reaching twice that 
of monoculture (Liu et al., 2018). Microal-
gae-yeast coculture interactions offer prom-
ising opportunities for improving biomass 
and enhancing the synthesis of valuable 
compounds. These synergistic effects can be 
attributed to gas exchange, nutrient sharing, 
and gene expression alterations (Arora et al., 
2019; Karitani et al., 2024; Xu et al., 2024). 
The co-culture system also demonstrated 
synergistic effects on dissolved oxygen and 
pH levels, which were mutually adjusted by 
the two organisms (Liu et al., 2018). Despite 
the numerous advantages of co-culturing, it 
also presents disadvantages that need to be 

addressed. A key issue is maintaining an op-
timal inoculum ratio, as deviations can re-
duce efficiency or harm the culture (Karitani 
et al., 2024). Furthermore, in some cases 
organic acids produced by microalgae may 
inhibit yeast growth (Naseema Rasheed et 
al., 2023).
Medium optimization plays a crucial role 
in enhancing the performance of microal-
gae and yeast co-cultures. The composition 
of the cultivation medium significantly af-
fects growth, metabolite production, and 
the symbiotic relationship between microal-
gae and yeast (Xu et al., 2024; Qin et al., 
2019). Studies have shown that optimizing 
the macronutrient composition, particularly 
carbon and nitrogen sources, can substan-
tially improve co-culture performance. For 
instance, the addition of glucose with pep-
tone in the co-culture of Chlorella vulgar-
is or Chlorella sorokiniana with a strain of 

Saccharomyces cerevisiae significantly en-
hanced biomass production of the co-culture 
by approximately 2-fold compared to that 
in monocultures (Xu et al., 2024). Further-
more, the addition of Rhodotorula glutinis 
yeast residual cell-free medium to Chlorella 
vulgaris  cultures enhanced the production 
of specific fatty acids, such as nervonic acid 
and behenic acid, by 9 and 6 times, respec-
tively (Ashtiani et al., 2021). By optimizing 
the nutrient composition, researchers can 
enhance biomass production and synthesis 
of valuable metabolites. This approach im-
proves the economic feasibility of micro-
bial metabolite production and opens up 
new possibilities for sustainable biofuel and 
biochemical production (Arora et al., 2019; 
Kitcha and Cheirsilp, 2014).
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Haematococcus pluvialis is a freshwater 
unicellular green microalga that is widely 
recognized as one of the best natural sources 
of astaxanthin (Lee et al., 2016). It has the 
most significant capacity to accumulate as-
taxanthin among non-genetically modified 
organisms, with the ability to compose up 
to 4-7 % of its total dry weight (Gherabli 
et al., 2023; Mota et al., 2022). H. pluvialis 
undergoes a unique lifecycle, transitioning 
from green vegetative motile cells (green 
phase) to red hematocysts under stress con-
ditions (red phase), during which it develops 
a thick, rigid three-layered cell wall  (Kim et 
al., 2022).
Xanthophyllomyces dendrorhous, formerly 
known as Phaffia rhodozyma, is also ca-
pable of synthesizing astaxanthin (Domín-
guez-Bocanegra et al., 2007; Rodríguez-Sáiz 
et al., 2010). Although both organisms are 
considered major sources of natural astax-
anthin production, their cultivation methods 
and astaxanthin yields vary. H. pluvialis can 
produce up to 9.2 mg/g of astaxanthin under 
optimal conditions, wherease X. dendror-
hous has achieved yields of up to 9 mg/g 
through genetic engineering and optimized 
fermenter conditions (Domínguez-Bocaneg-
ra et al., 2007; Gassel et al., 2014). Both H. 
pluvialis and X. dendrorhous are of signif-
icant interest to the biotechnology industry 
for the production of natural astaxanthin, 
a valuable carotenoid used in aquaculture, 
nutraceuticals, cosmetics, and pharmaceu-
ticals (Rodríguez-Sáiz et al., 2010; Mota et 
al., 2022). Ongoing research focuses on im-
proving cultivation techniques, enhancing 
astaxanthin yields, and developing cost-ef-
fective production methods to compete with 

synthetic astaxanthin.  
Co-cultivation of X. dendrorhous and H. 
pluvialis has been explored as an innova-
tive approach to enhance astaxanthin pro-
duction while simultaneously addressing 
environmental concerns by in situ carbon 
dioxide fixation. This method exploits the 
complementary metabolic abilities of these 
two astaxanthin-producing microorganisms 
(Domínguez-Bocanegra et al., 2007). In a 
mixed culture system, CO2 generated by X. 
dendrorhous during fermentation was fixed 
by H. pluvialis through photosynthesis. 
Concurrently, the oxygen produced by H. 
pluvialis stimulates growth and astaxanthin 
production in X. dendrorhous. This sym-
biotic relationship resulted in significantly 
increased biomass and astaxanthin concen-
trations compared to pure cultures of either 
species (Dong and Zhao, 2004). This co-cul-
ture approach presents a novel method for 
improving the yield of high-value bio-prod-
ucts while simultaneously achieving in situ 
CO2 fixation. By combining the strengths 
of both microorganisms, this strategy ad-
dresses the limitations of individual cultures 
and offers a more sustainable and efficient 
means of improving production (Dong and 
Zhao, 2004).
This study aims to investigate the optimal 
culture medium for cocultivation of the two 
species, H. pluvialis and X. dendrorhous. 
The focus was on understanding how nutri-
ents influence the cell growth of each spe-
cies during coculture, particularly before the 
microalga transitioning into the red phase. 

Material and methods
Inoculum preparation



13

Plant, Algae, and Environment, Vol. 9, Issue 2, June 2025

The yeast X. dendrorhous 
(IBRC-M30167) was purchased as a lyo-
philized ampoule from the Iranian Biologi-
cal Resource Center. The yeast was activated 
by adding Yeast Malt (YM) medium (10 g/L 
glucose (Merck, Germany), 5 g/L peptone, 
3 g/L yeast extract, and 3 g/L malt extract 
(Quelab, Canada) to the ampoule and grown 
on YM Petri dishes (Villegas-Méndez et al., 
2021). A sample of grown yeast was trans-
ferred into a 250 mL Erlenmeyer flask filled 
with 50 mL of YM medium. The mixture 
was then incubated for 48 h at 23 °C with 
continuous stirring at 110 rpm in an orbital 
shaker incubator (KTG, Iran). This culture 
served as the inoculum for subsequent ex-
periments.
Liquid H. pluvialis was purchased from the 
algae bank of the Research Institute for In-
dustrial Biotechnology, Academic Center 
for Education, Culture, and Research (ACE-
CR), Mashhad, Khorasan Razavi Province, 
Iran. It was grown in a Bold’s Basal Medi-
um (BBM) (Samhat et al., 2024) and incu-
bated for 14 days at 23 °C under 12 h daily 
white illumination (30 μml m-2 s-1).
Growth curve of X. dendrorhous
To determine the growth curve of the yeast 
over 5 days, experiments were conducted in 
duplicate using 250 mL Erlenmeyer flasks 
containing 50 mL YM medium. The flasks 
were inoculated with 10 % (v/v) of the pre-
pared inoculum suspension. The cultures 
were incubated at 23 ± 1 °C with continuous 
shaking at 110 rpm. Growth was monitored 
by measuring the optical density at 600 nm 
using a spectrophotometer and counting cell 
numbers with a hemocytometer at 24-hour 
intervals for five consecutive days. The sam-

ples were appropriately diluted when neces-
sary to ensure that the readings fell within 
the linear range of the spectrophotometer. 
The obtained OD values and cell numbers 
were plotted against time to generate the 
yeast growth curve, allowing for the identi-
fication of different growth phases.
Growth curve of H. pluvialis
Growth curve experiments were conducted 
to determine the growth characteristics of 
microalgae. Microalgal cultures were inoc-
ulated with 10 % (v/v) inoculum into sterile 
250 mL Erlenmeyer flasks containing 50 mL 
BBM medium. The flasks were incubated in 
a shaker incubator at 23 ± 1 °C under 12 h 
of daily illumination (30 μmol m-2 s-1) and 
agitated manually three times per day. Cell 
density was measured daily using a hemo-
cytometer, and the optical density (OD) was 
recorded at 680 nm using a spectrophotom-
eter (UNICO S-2150, USA). Samples were 
collected every 24 h for 15 days. The exper-
iment was performed in duplicate, and the 
average values were used to plot growth 
curves.
Preparation of media
Four candidate media were prepared based 
on BBM (standard medium of H. pluvialis) 
and the constituents of YM (standard medi-
um of X. dendrorhous). Since yeast growth 
requires a carbon source, all media contain 
glucose. The media used were as follows.
1-BBM with the addition of 10 g/L of Glu-
cose (BG)
2-BBM with 10 g/L glucose and 3 g/L Malt 
(BGM)
3- BBM with 10 g/L glucose and 5 g/L Pep-
tone (BGP) 
4-BBM with 10 g/L glucose and 3 g/L Yeast 
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extract (BGY). 
The cell numbers of H. pluvialis and X. den-
drorhous after 6 days of coculture incuba-
tion were compared with their standard me-
dium, BBM, and YM, respectively.
Incubation 
The experiments were performed in 250 mL 
Erlenmeyer flasks containing 50 mL of the 
prepared media. All flasks were started at an 
initial cell concentration of 2 × 104 cells/mL 
for each species. The flasks were kept in an 
illuminated shaker incubator for 6 days at 23 
°C under 12 h of daily illumination (30 μmol 
m-2 s-1) and shaken at 110 rpm. The growth 
of both microalgae and yeast was measured 
at the end of six days of incubation by count-
ing cell numbers under a microscope using 
a hemocytometer, and all experiments were 
performed in duplicate.
Statistical analysis
All data are expressed as mean ± standard 
error of the mean. Statistical analysis was 
performed using the Minitab software. A 
one–way ANOVA analysis was performed 
to detect whether the data were significantly 

different by using a p-value of p < 0.05.

Results and Discussion
Growth curve of X. dendrorhous

The X. dendrorhous culture in YM medi-
um demonstrated a typical growth curve, as 
indicated by both cell concentration and OD 
measurements (Figure 1). However, the ini-
tial lag phase was too short to be observed. 
The exponential growth phase occurred 
within the first 48 hours, during which the 
cell concentration increased from 1.94×106 
cells/mL at inoculation to 1.5×108 cells/mL 
at the end of day 2. Following this period, the 
culture entered a stationary phase, with cell 
numbers stabilizing around 1.6×108 cells/
mL after 24 h, and a slight decrease was ob-
served to 1.4×108 cells/mL by the end of day 
5. Parallel optical density measurements at 
600 nm revealed similar growth patterns. 
The OD values increased from 0.185 at in-
oculation to 2.213 after 2 days, correspond-
ing to the exponential growth phase, and 
remained constant until the end of the mea-
surements, indicating the stationary phase.
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X. dendrorhous typically exhibits a growth 
curve with distinct phases, including expo-
nential and stationary phases (Castelblan-
co-Matiz et al., 2015). Recent studies have 
mainly focused on carotenoid biosynthesis, 
particularly astaxanthin, which is often in-
duced during the late exponential growth 
phase (Lodato et al., 2007). Notably, growth 
curve and carotenoid production can be sig-
nificantly influenced by various factors such 
as pH and nutrient sources, as well as avail-
ability. For example, the carbon source plays 
a crucial role in determining the timing of 
carotenoid biosynthesis. When grown on a 
non-fermentable carbon source, such as suc-
cinate, carotenoid production begins at the 
start of the growth cycle. It is approximate-
ly three times higher than when grown on 
glucose, a fermentable carbon source. In the 
presence of glucose, carotenoid production 
typically occurs at the end of the exponential 
phase (Wozniak et al., 2011).

The impact of nitrogen sources on carot-
enoid biosynthesis in X. dendrorhous is not 
thoroughly documented. However, the car-
bon to nitrogen (C/N) ratio in the growth 
medium significantly influences carotenoid 
production. As the C/N ratio increases, both 
cell growth and total astaxanthin accumula-
tion increase, though the astaxanthin con-
tent per cell decreases. This indicates that 
the balance of carbon and nitrogen plays a 
crucial role in the process (Pan et al., 2017). 
Nitrogen sources such as peptone and yeast 
extract are known to enhance yeast metabo-
lism and growth. For instance, in Saccharo-
myces cerevisiae, peptone increases biomass 
production (Da Cruz et al., 2002), while in 
Penicillium canescens, yeast extract is op-
timal for enzyme production, with the best 
results achieved by combining yeast extract 
and peptone (Bakri et al., 2003).
A comparison of the growth curves of the 
two species (Figures 1 and 2) shows that X. 



16

Plant, Algae, and Environment, Vol. 9, Issue 2, June 2025

dendrorhous has a much faster growth rate 
than H. pluvialis, which necessitates the 
need to control the growth of yeast in the 
co-culture. Therefore, in this study, compo-
nents of YM medium were added to BBM to 
propose different culture media for the con-
trolled growth of X. dendrorhous in co-cul-
ture with H. pluvialis. This approach can be 
valuable for optimizing cultivation condi-
tions to enhance biomass production.
Growth curve of H. pluvialis
The growth curve of H. pluvialis was mon-
itored over 15 days using cell number and 
OD measurements (Figure 2). 
The experiment began with an initial cell 
density of 1.75 × 104 cells/mL. A lag phase 
was observed during the first 3 days, with 
a minimal increase in cell number. Expo-
nential growth started on day 4, with cell 
numbers increasing rapidly to reach 2.07 × 
105 cells/mL by day 12. The growth rate de-
creased between days 12 and 15, indicating 
the start of the stationary growth phase. By 
day 15, the culture reached a final cell den-
sity of 2.21 × 105 cells/mL. The OD graph 
also showed the same growth pattern as the 
cell number, except for the stationary phase.
The growth of H. pluvialis in BBM has been 
extensively studied, with several studies 
reporting favorable results. BBM has 
been found to provide optimal conditions 
for the vegetative growth of H. pluvialis 
compared to other common media, such as 
BG11 and 3NBBM (Nahidian et al., 2018). 
In autotrophic cultivation, BBM yielded 
the highest cell density of 1.5 × 105 cells/
mL among the tested media (Tripathi et al., 
1999). Interestingly, the growth curve of H. 
pluvialis in BBM can be further optimized 

by adjusting the nutrient concentrations. 
For instance, increasing phosphate levels 
in modified BBM led to up to an 86 % 
increase in growth rate and the highest cell 
density and the optimal concentrations of 
micronutrients such as boron (0.185 mM) 
and iron (0.046 mM) were found to enhance 
growth rates, although these optima depend 
on inoculum size (Nahidian et al., 2018). 
BBM consistently performed well for H. 
pluvialis growth, with a maximal biomass 
productivity of 86.54 mg/L/day (Zhao et 
al., 2019). However, the growth curve can 
be significantly improved by optimizing 
the nutrient concentrations, particularly 
phosphate, nitrogen and carbon. It’s worth 
noting that while BBM supports excellent 
vegetative growth, other media may be 
more suitable for subsequent astaxanthin 
production in a two-stage cultivation 
strategy (Zhao et al., 2019; Fábregas et al., 
2000). Wang et al. (2013) investigated the 
impact of varying concentrations of nitrate 
on biomass and astaxanthin production from 
H. pluvialis. The initial nitrate concentration 
significantly influenced the final biomass 
density; specifically, higher initial nitrogen 
concentrations in the culture led to greater 
final biomass density at the end of the 10-
day culture period. The observed increases 
in final biomass density were attributed to 
both an increase in cell number and size 
(Wang et al., 2013).
Pang and Chen (2017) studied the effects 
of C5 organic carbon on the growth and 
cellular activity of H. pluvialis. They 
compared phototrophic, heterotrophic, and 
mixotrophic cultures using sodium acetate 
as the carbon source. The results showed 
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that the highest cell density was achieved 
under mixotrophic conditions, which was 
more than double that of the heterotrophic 
culture and higher than the phototrophic 
culture. This indicates that light is crucial for 
the growth and cell division of H. pluvialis. 
The researchers also examined nine different 
organic carbon sources, finding that ribose 
,mannose ,fructose ,and sodium acetate 
resulted in the highest cellular densities 
(Pang and Chen, 2017).
BBM medium was selected as the base for 
potential co-culture media because of the 
necessity of excellent growth in the green 
phase of H. pluvialis for its co-culture with 
yeast.
Medium optimization for the co-culture
The results of the comparative study on cell 
concentration of X. dendrorhous and H. plu-
vialis in six different culture media (YM, 
BBM, BG, BGM, BGP, and BGY) are pre-
sented in Figure 3. 
Growth of X. dendrorhous in different media 
in co-culture

Investigation of the growth of X. dendror-
hous in the six different culture media in 
co-culture with H. pluvialis revealed that BG 
medium exhibited the highest cell numbers 
at the end of the co-cultivation, reaching a 
maximum of 3.8×105 cells/mL after 6 days 
(Figure 3). This was followed by BBM with 
glucose and peptone (BGP), which showed 
a peak cell density of 2.925 × 105 cells/mL. 
The BGM medium supported moderate 
growth at 1.725×105 cells/mL. In contrast, 
BGY and YM media showed controlled 
growth of yeast cells in the co-culture. The 
standard BBM medium without supple-
ments showed no growth, with a final cell 
density of 5 × 103 cells/mL. This indicates 
that the additional nutrients, particularly the 
presence of glucose in the other media, sig-
nificantly enhanced X. dendrorhous growth.
Growth of H. pluvialis in different media in 
co-culture
After six days of co-cultivation, H. pluvia-
lis exhibited varying levels of cell growth 
across the six tested culture media (Figure 
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3). The highest cell densities were observed 
in the BGM and BGY, with 1.22×105 and 
1.488×105 cells/mL values, respectively. 
This was followed by BBM and BG, which 
had cell counts of 4.5 × 104 cells/mL and 
4×104 cells/mL, respectively. The standard 
BBM medium demonstrated non-significant 
growth compared to the supplemented me-
dia. Among the variations in BBM, the ad-
dition of malt and yeast extract resulted sig-
nificant increase in cell numbers, whereas 
peptone had the least impact on the growth 
enhancement of the microalga. As expected, 
the YM medium showed no growth com-
pared to the BBM-based culture media, 
resulting in a final cell count of 1.25×104 
cells/mL. These results indicate that sup-
plementing BBM with certain compounds, 
specifically malt and yeast extract, signifi-
cantly improves the growth of H. pluvialis 
in co-culture.
Comparison of the growth of H. pluvialis 
and X. dendrorhous in the co-culture 
The growth of X. dendrorhous and H. pluvi-
alis was compared across various coculture 
media (Figure 3), revealing distinct patterns 
and interactions between the two species. In 
the standard medium for X. dendrorhous, 
YM, the yeast’s cell concentration was sev-
en times higher than that of H. pluvialis. This 
indicates that H. pluvialis cannot utilize the 
complex organic nutrients present in YM. 
On the other hand, in BBM, the standard 
medium for H. pluvialis, X. dendrorhous 
showed no growth due to a lack of carbon 
sources, but the cell density of H. pluvialis 
increased to 2.25 times the initial cell con-
centration.
The BG medium allows both species to 

thrive effectively; however, the cell densi-
ty of X. dendrorhous was 9.5 times higher 
than that of H. pluvialis. The yeast rapid-
ly consumed all available glucose, which 
affected the growth of the microalga. X. 
dendrorhous is known to efficiently utilize 
glucose as a carbon source for growth. Mar-
coleta et al. (2011) noted that high glucose 
concentrations in the medium result in high 
cell growth but low carotenoid production, 
indicating that the yeast rapidly consumes 
glucose (Marcoleta et al., 2011). This sug-
gests that while glucose is essential for yeast 
growth, the rapid consumption of glucose 
by X. dendrorhous may allow it to outcom-
pete H. pluvialis in a co-culture situation, 
preventing the microalgae from utilizing the 
glucose present in the medium.
The rapid growth of yeast, driven by glucose 
consumption, leads to the expectation that 
the carbon dioxide produced during this pro-
cess will promote the growth of microalgae. 
However, the results do not support this as-
sumption. This indicates that the high levels 
of carbon dioxide generated in a short time 
from yeast growth are insufficient to meet 
the carbon needs of microalgae.
In the BGP medium, the high growth of X. 
dendrorhous also led to nutrient depletion, 
which hindered the growth of H. pluvialis, 
and similar to the BG medium, the CO2 pro-
duced by the yeast in a short time was in-
sufficient for the optimal growth of the mi-
croalga.
The BGM medium was superior for both 
species as it contained essential nutrients 
and promoted balanced growth. The simi-
lar cell concentrations observed in BGM for 
both species indicate its potential for creat-
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ing a controlled co-culture environment. In-
terestingly, the BGY medium resulted in the 
highest cell concentration for H. pluvialis 
while effectively preventing the growth of 
X. dendrorhous. This suggests that the BGY 
medium facilitates efficient nutrient utiliza-
tion and gas exchange between the two spe-
cies.
It should be noted that, according to Figure 
3, the presence of glucose in the medium is 
necessary for yeast growth, while malt and 
yeast extract are the most effective additives 
for enhancing microalgae growth.
A consistent pattern emerged across all me-
dia: when the growth of X. dendrorhous 
reached its maximum (as observed in BG 
and BGP media), the growth of H. pluvi-
alis was inhibited due to competition for 
nutrients and inadequate CO2 production. 
This highlights the importance of selecting 
a culture medium that balances the growth 
of both species, ensuring controlled nutri-
ent competition and optimal gas exchange. 
In conclusion, a successful co-culture of X. 
dendrorhous and H. pluvialis necessitates a 
precisely formulated medium that controls 
the growth of the yeast while optimizing the 
growth of H. pluvialis. This balanced ap-
proach would facilitate controlled nutrient 
competition and the efficient utilization of 
synergistic gases (CO2 and O2) produced by 
each species, ultimately leading to a more 
productive co-culture system.
Dong and Zhao (2004) investigated the 
co-culture of H. pluvialis and Phaffia rhodo-
zyma in BBM medium with varying glucose 
concentrations. They found that the biomass 
in the mixed cultures was higher than in pure 
cultures, particularly with glucose concen-

trations between 3-5 g/L, and it increased 
as glucose levels rose. P. rhodozyma also 
exhibited higher biomass at lower glucose 
concentrations, but saw a decline when con-
centrations exceeded 15 g/L, possibly due 
to the Crabtree effect. In contrast, H. pluvi-
alis had low biomass concentrations, show-
ing little variation across the tested glucose 
ranges (Dong and Zhao, 2004).
Recent studies have also shown that optimi-
zation of culture conditions, particularly the 
medium composition, plays a crucial role in 
the success of these co-culture systems. In a 
study conducted by Xu et al. (2024), it was 
shown that the addition of glucose and pep-
tone significantly enhanced biomass pro-
duction in Chlorella-Saccharomyces co-cul-
tures, increasing it by approximately 2-fold 
compared to monocultures. Glucose supple-
mentation alone led to a 3-fold increase in 
lipid content while restricting yeast growth. 
The combination of glucose and yeast ex-
tract benefited yeast monocultures but not 
the co-culture system (Xu et al., 2024). In 
another study, using food waste hydrolysate 
as a culture medium for Rhodosporidium 
toruloides and Chlorella vulgaris co-culture 
resulted in improved nitrogen utilization (23 
% increase), reduced sugar utilization (17 
% increase), and lipid production (12 % in-
crease) compared with R. toruloides mono-
culture (Zeng et al., 2018). Additionally, uti-
lizing different carbon and nitrogen sources 
can affect symbiotic relationships. Tian et al. 
(2020) demonstrated that a symbiotic yeast 
(Cryptococcus sp.) can hydrolyze sucrose, 
making it available for Chlorella pyrenoido-
sa under both heterotrophic and mixotrophic 
conditions.
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Conclusion
This study investigated the optimal cul-

ture medium for the co-culture of Haema-
tococcus pluvialis and Xanthophyllomyces 
dendrorhous, two microorganisms known 
for their ability to produce astaxanthin. 
Results showed that H. pluvialis exhibited 
the highest cell densities in BGM and BGY 
media, while X. dendrorhous growth was 
highest in BG medium. BGM demonstrat-
ed balanced growth for both species, while 
BGY resulted in the highest cell concentra-
tion for H. pluvialis and controlled growth 
of X. dendrorhous. The study highlights the 
importance of selecting a culture medium 
that balances the growth of both species, 
ensures controlled nutrient competition, and 
optimizes gas exchange for a productive 
co-culture system.
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Abstract
The Dyeing and textile industries are among the sectores that hold a significant global pres-

ence in Iran and worldwide. These industries are major water consumers; consequently, sub-
stantial quantities of wastewater containing toxic compounds, including synthetic dyes, are 
released into the environment at various stages of the process within these industries. The 
treatment and purification of wastewater generated by these industries is of great importance 
to reduce their associated risks, and a range of physical, chemical, and biological methods are 
employed to remove pollutants from industrial wastewater. Meanwhile, the use of microalgae 
for bioremediation is one of the primary eco-friendly treatment methods due to its low cost, 
relianced on natural processes, and reduced risk of toxic substance accumulation. In this study, 
the microalgae Tetradesmus obliquus were utilized to investigate the removal rate of Acid Blue 
92 dye under various environmental conditions, including temperature, pH, and initial con-
centration of the dye, initial cell number, and reaction duration. The treatments encompassed 
temperature (25, 10, 5 ºС), pH (8.5, 7.5, 6.5, 5.5, 4.5), initial dye concentration (5, 10, 20, and 
50 mg/L), initial cell number (5, 10, 20, and 30 ×106 cells. mL-1), and reaction duration (ev-
ery 24 hours for 4 days). Furthermore, the reusability of individual algal biomass in the con-
tinuous purification of the dyes was investigated through several consecutive decolorization 
experiments. Based on the results, the removal efficiency of Acid Blue 92 dye increased with 
increasing cell number and increasing temperature. However, the removal efficiency decreased 
with increasing initial concentration of the dye. In addition, the optimal pH for the dye de-
colorization process was determined to be in the pH range of 6-7. The results of the pollutant 
removal reproducibility tests showed that this alga can repeatedly remove the dye from the 
contaminated wastewater. Therefore, the algae probably absorb and degrade the pollutant from 
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the environment to an acceptable extent by utilizing the biodegradation process. In conclusion, 
it can be stated that T. obliquus algae have a significant capacity for the removal and biotreat-
ment of acid blue dye 92, particularly under optimal conditions, and may be considered as a 
viable option for eliminating colored pollutants in aquatic environments.

Keywords: Bioremediation, Tetradesmus obliquus, algae, Organic pollutants, mono-azo dye, 
Acid Blue 92

Introduction
The contamination of drinking water 

globally presents one of the main environ-
mental challenges we face today. A signif-
icant portion of water pollution occurs due 
to the discharge of sewage containing waste 
as well as improper disposal of industrial 
wastes, which include dyes, heavy metals, 
pharmaceutical products, and more. These 
substances disrupt the ecological cycle of 
species and change the availability and qual-
ity of vital elements for living organisms. It 
is predicted that the world will face a 40% 
water shortage by 2030, which poses a se-
rious challenge to sustainable development 
(Sun et al., 2016).
The dyeing and textile sectors are among the 
industries that have with extensive potential 
in Iran and globally. These industries are rec-
ognized as the largest consumers of water, 
consequently leading to the discharge of sig-
nificant quantities of wastewater containing 
toxic compounds, including synthetic dyes, 
are released into the environment at differ-
ent stages of the process in these industries. 
Currently, over one hundred thousand types 
of commercial dyes are utilized in various 
industries, with approximately 10-15% of 
these dyes being released into the environ-
ment. Furthermore, reports indicating that 
around 2.5 × 105 tons of dyes are discharged 

into the environment annually (Singh and 
Singh, 2017).
Due to their wide application and ease of 
production, synthetic dyes are widely used 
in industries such as paper printing, food 
products, pharmaceuticals, cosmetics, and 
as additives in petroleum products, in addi-
tion to the textile industry. The stability of 
these dyes is also much higher than that of 
natural dyes. Therefore, they can cause sig-
nificant environmental problems by creating 
an imbalance in the chemical and organic 
content of aquatic ecosystems (Sarkar et al., 
2017).
Discharging wastewater containing these 
compounds without treatment into aquatic 
environments will have harmful effects on 
aquatic life and subsequently on the health of 
aquatic consumers. Therefore, it seems nec-
essary to take effective measures to treat wa-
ter and wastewater contaminated with these 
dyes. Water sources contaminated with such 
toxic wastewater can, over time, contam-
inate the surrounding soil ecosystems and 
cause serious environmental problems for 
the growth of living organisms, both plants 
and animals. In this context, reports show 
that some azo dyes can severely affect plant 
growth by obstructing seed germination, 
diminishing seedling survival rates, reduc-
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ing photosynthesis, and preventing branch 
and root elongation (Baena-Baldiris et al., 
2020). Consequently, the treatment of these 
substantial volumes of wastewater is of great 
importance. At present, the management of 
water monitoring and treatment processes is 
dominated by physical and chemical treat-
ment methods along with traditional infra-
structures, which are characterized by clas-
sical control and treatment systems. Current 
techniques, such as physical and biological 
adsorption, membrane filtration, oxidation, 
ozonation, reverse osmosis, ion exchange, 
photocatalysis, and electrochemical oxida-
tion are frequently used for the treatment 
of pollutants. These methods for treatment 
and removal do not always followed by the 
prevailing standards, which ultimately leads 
to serious pollution due to the production of 
new toxic intermediate compounds. These 
methods are also expensive, energy-inten-
sive, and not affordable for small industries 
and low-income processors. This financial 
burden is likely the main reason for the de-
celeration in pollution control efforts, par-
ticularly in less developed and developing 
countries (Khandare et al., 2013; Ummaly-
ma et al., 2018).
The technology of using algae to remove 
pollutants, called algae purification (Moradi 
et al., 2020), is superior to other technologies 
due to its low cost, being based on natural 
processes, and reducing the risk of toxic ac-
cumulation (Cepoi and Zinicovscaia, 2020). 
The process of bioremediation of pollutants 
can be carried out through biosorption or 
biodegradation. Biosorption refers to the re-
moval of pollutants from the liquid phase, 
such as wastewater or culture medium and 

their transfer to the solid phase (biosorbent 
surface) (Rasolzadeh et al., 2019). Some-
times, the algae involved in bioremediation, 
after biodegrading the pollutant compounds, 
use them as a source of carbon, nitrogen, or 
energy (Moradi et al., 2020).
Bioremediation methods that utilize bacte-
ria, fungi, yeast, and even their consortium 
designs have been effective in removing 
dyes, but they face implementation prob-
lems in the practical and field management 
of wastes. The use of plants and green algae 
to clean up pollutants in situ can be done 
with much lower remediation costs and also 
offers a carbon-neutral and therefore envi-
ronmentally friendly approach to removing 
toxic pollutants from the environment (Dietz 
and Schnoor, 2001). The use of microalgae 
as a bioremediation agent for colored waste-
water has attracted much attention because 
these microalgae play an important role in 
carbon dioxide fixation. In addition, the bio-
mass produced by algae is very efficient as 
a raw material for the production of biofuels 
(Huang et al., 2018). Algae are considered 
potential biosorbents due to the diversity of 
functional groups, such as hydroxyl, car-
boxyl, amino, phosphate, and other groups 
present on the cell surface. In addition to the 
characteristics of the cell wall, the process 
of biosorption of pollutants into the algal 
cells is also of great importance (Moradi et 
al., 2020). The process of degradation and 
biodegradation of pollutants inside living 
cells is carried out through various enzymat-
ic oxidation and reduction reactions (Zohoo-
rian et al., 2020). In this study, the microalga 
Tetradesmus obliquus was utilized to inves-
tigate the removal rate of Acid Blue 92 dye 
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and the effect of some biotic and abiotic fac-
tors on bioremediation efficiency.

Material and methods
T. obliquus alga was obtained from the 

Artemia and Aquaculture Research Institute 
of Urmia University and cultured in BBM 
medium at 25 °C. This alga was identified 
by Asal Pishe et al. (2012) and registered in 
NCBI with the number (Accession Number 
OR393092).
T. obliquus was cultured in Bold’s Basal 
Medium (BBM), a standard culture medi-
um for freshwater algae. The culture me-
dium was prepared according to standard 
protocols and sterilized by autoclaving at 
121°C and 15 psi for 20 min (Asghari et al., 
2023). To ensure uniformity and reproduc-
ibility, a fresh culture medium was used in 
all experiments (Torbati, 2019). Color re-
moval experiments were performed in 250 
mL Erlenmeyer flasks containing 100 mL of 
BBM culture medium by inoculating with T. 
obliquus. 
Temperature (5, 10, and 25 °C), pH (4.5, 5.5, 
6.5, 7.5, and 8.5), initial dye concentration 
(5, 10, 20, and 50 mg/L), initial cell num-
ber in the medium (5, 10, 20, 30 ×106 cells. 
mL-1), and reaction time (every 24 hours 

for 4 days) were adjusted and investigated 
as the main variables. Each time, the effect of 
just one factor on removal efficiency was deter-
mined, and other effective parameters were kept 
constant. The Erlenmeyer flasks were placed 
on a circular shaker at a speed of 150 rpm 
to provide uniform suspension of algal cells 
and proper aeration. Dilute KOH and H2SO4 
solutions were also used to adjust the initial 
pH of the solution, and the pH was measured 
by a pH meter (Hanna Instrument Inc.).

The number of cells in the culture medium 
was counted using a hemocytometer slide 
(Kennari et al., 2008). These experiments 
were conducted over a 4-day period, with 
samples collected at specific time intervals 
(0, 24, 48, 72, and 96 hours). The samples 
were centrifuged at 4000 rpm for 10 minutes 
to separate the algal cells and leave a clear 
solution for analysis. The percentage of dye 
removal was calculated using the following 
equation at the maximum wavelength (λmax 
= 571 nm) using a UV-Vis spectrophotom-
eter (Camspec M330 model, UK) (Torbati, 
2019).             
Dye Removal (%)     
A0: Initial absorption of dye solution
A: Solution absorption at the time of mea-
surement.
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Results 
The results of the effect of the initial 

number of T. obliquus algae cells on the effi-
ciency of AB92 dye removal over 4 days are 
shown in Figure 2. According to the results, 
with an increase in the number of algae cells, 
the percentage of dye removal from the me-
dium also increased. So in the treatments of 
5 ×106 to 30 ×106 cells mL-1, respectively, 55 
and 95 % of the dye with an initial amount 
of 10 mg/L was removed from the medium 
culture after 4 days. The initial concentra-

tion of the dye can play an important role in 
the efficiency of dye removal. The results of 
the effect of the initial concentration of the 
AB92 dye on the efficiency of dye remov-
al in T. obliquus algae cells for 4 days are 
shown in Figure 3. According to the results, 
the efficiency of the dye removal process 
decreases with increasing initial concen-
tration of the dye. However, the amount of 
dye removed per unit time increases with in-
creasing initial concentration. These results 
probably indicate a complex relationship be-
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tween the ability of the algae to decompose 
and the concentration of the dye.
The results of the effect of different pH lev-
els of the T. obliquus algae culture medium 
on the efficiency of removal of AB92 dye by 
microalgae for 4 days are shown in Figure 4. 
The optimal efficiency of removal of AB92 
dye was determined after 4 days of algae 
treatment at pH 6.5. 
The results of the effect of different tempera-

tures (25-5 ºC) of the T. obliquus algae cul-
ture medium on the efficiency of removing 
the AB92 dye in the microalgae for 4 days 
are shown in Figure 5. The results show that 
the efficiency of the dye removal percentage 
increases with increasing temperature. 
Figure 6 shows the results of the evaluation 
of the repeated removal of dye (10 mg/L) by 
the same algal mass with an initial cell count 
of 5 × 106 alga during 4 consecutive trial pe-
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riods. In this study, sampling was performed 
at intervals of every 24 hours, and the per-
centage of removal of this material was cal-
culated. This process was repeated 4 times. 
According to Figure 5, the ability of the al-
gal mass to repeatedly purify the dye was 
confirmed. The acceptable ability of the sin-
gle algal mass to repeatedly remove the dye 
indicates that the biodegradation process is 
one of the main mechanisms involved in the 
removal of AB92 by algae.

Discussion
This study confirms the potential of T. 

obliquus as an effective bioremediation 
agent for synthetic dyes such as AB92. Ac-
cording to the results, the dye removal effi-
ciency of this algae is significantly affected 
by environmental factors. The efficiency of 
the dye removal percentage increases with 
increasing initial algae number. According 
to the results of Torbati, 2019, the number of 
initial cells in the test medium also played a 
positive role in the efficiency of dye remov-
al. It seems that with an increase in the num-
ber of algae cells in the medium, the num-

ber of pollutant biosorption sites increases, 
and subsequently, the pollutant removal rate 
increases (Ayele et al., 2021). Furthermore, 
according to the literature review, it has been 
determined that a threefold increase in the 
algal biomass of Caulerpa scalpelliformis 
and Pithophora sp. has resulted in a 60% 
and 33% increase in the removal efficiency 
of cationic dye, respectively (Aravindhan et 
al., 2007; Kumar et al., 2006).
The pH parameter is one of the most import-
ant factors affecting the efficiency of bio-
sorption of dyes by algae (El-Naggar et al., 
2018). In addition, the pH of the environ-
ment can affect the solubility of some dyes 
as well as the interaction between dye mol-
ecules and algae. The cell surface charge of 
algae depends on the pH of the environment 
due to the presence of functional groups 
such as carboxyl, hydroxyl, amine, etc. For 
example, at acidic pH, the surface of algae 
has a higher positive charge and is favorable 
for the absorption of anionic dyes (Sun et 
al., 2019). According to the literature re-
view, the optimal pH for the growth of most 
microalgae has been determined to be in the 
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neutral range for the genus Scenedesmus (El-
Sheekh et al., 2017). Based on our results, 
the optimal pH for the removal of AB92 is 
also in this range. This pH is probably ideal 
for the balance between algal health and dye 
absorption capacity. Also, the AB92 dye is 
an anionic dye compound, and the pH that 
is optimal for algal growth and activity, and 
also creates a more positive charge on the 
algal surface, which can be determined to be 
optimal for the absorption of this dye (Ayele 
et al., 2021).
Khataee et al. (2012) noted that as tempera-
tures drop, the movement and absorption 
of water decline, and as a result of the re-
duced permeability of the algal membranes, 
the uptake of solvent molecules in water 
decreases, leading to a reduction in the ef-
fectiveness of the absorption process. In 
this study, temperatures higher than ambi-
ent temperature were not investigated due 
to the biological nature of the adsorbent and 
the negative role of high temperatures in the 
structure and activity of algae. The negative 
role of high temperatures in the bioreme-
diation process has also been confirmed in 
previous reports. It has been found that the 
absorption of Golden Yellow C-2g dye in C. 
scalpelliformis algae decreases significantly 
with an increase in temperature from 20 to 
60 ºC (Aravindhan et al., 2007). The viscos-
ity of the dye-containing solution decreases, 
and its absorption by the biosorbent and sub-
sequent removal at temperatures exceeding 
ambient levels is reduced. It is likely that at 
high temperatures, the rate of dye absorption 
decreases due to changes in the active sites 
of the biosorbent (Ayele et al., 2021).
This study confirms the effect of tempera-

ture (up to ambient temperature), while the 
efficiency of the removal process decreases 
with increasing initial dye concentration. 
Furthermore, the optimum pH for achiev-
ing the highest dye removal percentage was 
determined at pH 6.5. The integration of 
algal bioremediation strategies can play an 
important role in sustainable environmental 
management practices and, simultanously 
provide complementary benefits for the eco-
nomic perspective through the utilization of 
biomass. These applications can help reduce 
the negative impacts of industrial pollution 
on the environment and lead to the devel-
opment of sustainable and environmentally 
friendly solutions for the treatment of indus-
trial wastewater.
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Abstract
The microalga Dunaliella salina is one of the most resilient organisms adapted to harsh 

environments. Research indicates that the organisms, especially plants, respond to various en-
vironmental stresses differently. D. salina has emerged as a halotolerant model organism for 
studying stress adaptation due to its ability to thrive under extreme salinity, light, and nutri-
ent-deficient conditions. It produces a vital carotenoid, 9-cis beta-carotene, which is utilized in 
medical industry.  One of the significant interferences in stress responses is mediated by 21-24 
nucleotide interfering RNAs. Malate dehydrogenase is a key enzyme involved in energy me-
tabolism in both mitochondria and chloroplasts, and its transcription and activity regulation are 
highly significant. This study investigated the number of miRNA binding sites to the malate 
dehydrogenase transcript. The involvement of some miRNAs, including novel-m0533-3p, in 
energy-related metabolism has been identified. The results showed that the mitochondrial tran-
script had 5 binding sites and the chloroplast transcript had 1 binding site for novel-m0533-3p 
miRNA. The low number of miRNA binding sites to the chloroplast malate dehydrogenase 
mRNA sequence indicates that perhaps other gene expression regulation methods control the 
chloroplast malate dehydrogenase gene or probably, Chloroplastic Malat Dehydrogenase is 
regulated by enzyme activity, and also the 5 point of binding sites of the miRNA to the mito-
chondrial malate dehydrogenase mRNA, indicates that this type of gene expression regulation 
is more dominant. Our results suggest that miRNAs act as dynamic regulators that modulate 
MDH expression in a stress-type-dependent manner. These findings align with previous studies 
emphasizing post-transcriptional regulation as a key mechanism for microalgae adaptation to 
harsh environments. 

Keywords: Dunaliella salina, Malate Dehydrogenase, Interfering Ribonucleotide, Gene regu-
lation, transcription, Chloroplast, Mitochondria
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is closely linked to its capacity for high-val-
ue metabolite biosynthesis, particularly 
9-cis beta-carotene, a carotenoid of signifi-
cant medical and industrial interest (Zaran-
di-Miandoab et al., 2019). Environmental 
stressors such as variation in light intensity, 
salinity fluctuations, and nitrogen depriva-
tion trigger complex molecular responses 
in D. salina. These responses encompass 
differential gene expression and metabolic 
rewiring in prioritize protective compounds 
like beta-carotene over fatty acids (Zaran-
di-Miandoab et al., 2015; Barczak-Brzyżek 
et al., 2022).  
Gene expression regulation (a process de-
termining the type and quantity of proteins) 
plays a pivotal role in stress adaptation (Ni 
et al., 2009). Various methods of gene ex-
pression regulation are used to balance the 
concentration of enzyme proteins, and var-
ious other methods are used to regulate the 
activity of said enzyme proteins (Lackner 
and Bähler, 2008). In conditions of environ-
mental stress, It is crucial to regulate and 
control the energy status of the cell (Kansal 
et al., 2021). Malate dehydrogenase is a key 
enzyme that plays a significant rolein energy 
metabolism and the production of nicotin-
amide adenine dinucleotide (NADH); thus, 
the regulation of its transcription and activity 
is vital. The enzyme malate dehydrogenase 
(MDH) is important in metabolic cycles oc-
curring in two types of cellular organelles, 
mitochondria and chloroplasts (Xiao et al., 
2018). Mitochondrial MDH (mMDH) is in-
tegral to the tricarboxylic acid (TCA) cycle, 
driving ATP production and maintaining the 
NADH/NAD+ balance, while chloroplastic 
MDH (cMDH) facilitates carbon fixation 

and photoprotection (Ermakova et al., 2024; 
Fabian et al., 2009). Recent studies high-
light the role of small non-coding RNAs, 
particularly microRNAs (miRNAs), in the 
post-transcriptional regulation of stress-re-
sponsive genes, including MDH isoforms 
(Fang and Rajewsky, 2011; Hurschler et 
al., 2010). For instance, miRNAs can si-
lence target mRNAs via sequence comple-
mentarity, influencing metabolic pathways 
critical for stress survival (Infantino et al., 
2021). However, the mechanisms underly-
ing miRNA-MDH interactions in D. salina 
remain poorly characterized. This study in-
vestigates how miRNA-mediated regulation 
of MDH isoforms contributes to the alga’s 
stress adaptability, with implications for 
biotechnological applications 

Material and methods
Gene sequences were retrieved from 

the NCBI database, including mitochondri-
al (KT001001.1, KT001002.1) and chlo-
roplastic MDH isoforms (AF522057.1, 
EU352600.1, EU352601.1). Putative miR-
NA binding sites were predicted using miR-
Base (v22) and MirGeneDB, followed by in 
silico interaction analysis with TargetScan 
and miRWalk under stringent criteria: mini-
mum free energy (MFE ≤ -15 kcal/mol), seed 
region complementarity (≥6 nucleotides), 
and evolutionary conservation across algal 
species. RNAhybrid, IntaRNA, and RNA-
fold were employed to validate miRNA-mR-
NA interactions, focusing on thermodynam-
ic stability and structural accessibility. For 
physiological validation, VARNAv3.9 was 
utilized to model RNA secondary struc-
tures and assess the binding feasibility of 



36

Plant, Algae, and Environment, Vol. 9, Issue 2, June 2025

novel-m0533-3p under stress-mimicked 
conditions. This tool confirmed robust inter-
actions between novel-m0533-3p and chlo-
roplasts MDH transcripts, highlighting se-
quence-specific binding at conserved motifs 
within the 3’UTR, which likely modulates 
post-transcriptional repression under envi-
ronmental stress.

Results and Discussion  
The differential Targeting of miRNA on 

MDH Isoforms for D. salina malate dehy-
drogenase as identified in the NCBI data-
base,) illustrated that mitochondrial MDH 
transcripts exhibited 44 predicted miRNA 
binding sites, whereas the fewer sites pres-
ent in chloroplastic MDH (Table 1). 
Four transcripts detailing the characteristics 
of D. salina malate dehydrogenase are pre-
sented in Table 1. As can be seen in the table, 
the first row corresponds to the mitochon-
drial enzyme (KT001001.1), which has the 
capacity to bind and interact with miRNA at 
5 distinct points. The second, third, fourth 
rows pertain to the chloroplast enzymes, 
whose genes reside in the nucleus, while the 
resulting translation product is located in 
the chloroplast, contributing in the stroma 
and the Calvin cycle. All three transcripts of 
the chloroplast malate dehydrogenase gene 
(AF522057.1, EU352600.1, EU352601.1) 
can interact with miRNA at only a single 
point. The estimate of the number of points 
that can potentially bind to m0533-3p miR-
NA acts as a confirmation that interfering 
nucleotide affects the transcript of the nucle-
ar malate dehydrogenase gene, which may 
alter the regulation of gene expression.  The 
novel-m0533-3p sequence binds to the RNA 

of the malate dehydrogenase gene and alters 
its expression levels during stress (Lou et 
al., 2020).
The limited number of miRNA binding sites 
in the the mRNA sequence of chloroplast 
malate dehydrogenase suggests the pres-
ence of significant gene expression regula-
tion pathways that control the chloroplast 
malate dehydrogenase gene. Conversly, the 
high abundance of the mRNA binding site 
within the mRNA sequence of mitochon-
drial malate dehydrogenaseimplies that this 
type of gene expression regulation is more 
dominant than other regulatory mechanisms 
of gene expression (Afonso-Grunz and 
Müller, 2015; Fang and Rajewsky, 2011; 
Wang et al., 2016). miRNA sequences are 
recognised as significant regulators of gene 
expression, however, their effects are typi-
cally varies based on the specific conditions 
of the plant and the nature of environmental 
stress. A study conducted by Brzyżek (2022) 
showed that miRNAs can affect the expres-
sion of certain chloroplast genes, yet their 
effects are often less than the effect of light 
(Barczak-Brzyżek et al., 2022).
The regulation of chloroplast malate de-
hydrogenase activity appears to be largely 
influenced by redox regulation via the thi-
oredoxin system and is influenced by light 
(Yoshida et al., 2015; Miginiac‐Maslow et 
al., 2000). It seems logical that the need for 
regulation of the function of such a key en-
zyme would require a high speed of action, 
mediated by light and at the post-translation-
al level in the stroma. Certainly, regulation 
at the transcriptional level for a nuclear gene 
whose product is to function in the chlo-
roplast requires more time. Generally, the 
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differences in the expression of these two 
genes are related to the type of metabolism, 
environmental conditions, and the specific 
requirements of cells in response to both in-
ternal and external factors (Schwartzbach, 
2017). This difference in expression allows 
cells to respond more effectively to their 
metabolic and energy demands. The high-
er miRNA targeting of mitochondrial MDH 
may reflect its central role in energy produc-
tion and consumption during stress, requir-
ing precise regulation to balance ATP pro-
duction and redox homeostasis. In contrast, 
chloroplastic MDH suppression under stress 
(e.g., via novel-m0533-3p) could prioritize 
photoprotective carotenoid synthesis over 
carbon fixation, aligning with D. salina’s 
stress-response strategy (Li et al., 2024).  
The biological Implications of this variation 
in interaction with miRNA may be associ-
ated with the duration required to react and 
respond to environmental conditions. It ap-
pears that in response to environmental stim-
uli such as light, the chloroplast must adapt 
its energy state very quickly, which is why it 
employs the thioredoxin system to regulate 
MDH enzyme activity. However, to man-
age the energy state of the cell under vari-
ous conditions, the cell nucleus has enough 
time to regulate at the transcriptional level 
through the intervention of the miRNA. This 
variation in performance leads to the dual 
regulatory role of miRNAs. A single miR-
NA can upregulate or downregulate gene 
expression, depending on the cellular con-
text (Fabian et al., 2009). There is an empha-
sis on multi-miRNA targeting of miRNAs. 
Multiple miRNAs can target a single gene, 
and their combined activity determines the 

expression of a given gene. miRNA can 
act through binding to the 3’UTR of target 
mRNA (Fang and Rajewsky, 2011), mRNA 
Degradation, Translation Inhibition (Afon-
so-Grunz and Müller, 2015), Nascent pro-
tein degradation, mRNA storage in P-bodies 
(Fabian et al., 2009; Hurschler et al., 2010), 
and transcription inhibition (Fabian et al., 
2009). 
The findings of this study highlight the crit-
ical role of miRNAs in regulating the ex-
pression of mitochondrial and chloroplas-
tic malate dehydrogenase (MDH) genes 
in the microalga D. salina under various 
environmental stresses. Validation using 
three bioinformatics tools, RNAhybrid, In-
taRNA, and RNAfold, demonstrated that 
mitochondrial MDH exhibits significantly 
stronger constructive regulatory interac-
tions compared to its chloroplastic counter-
part, suggesting distinct miRNA-mediated 
post-transcriptional control mechanisms 
between the two organelles. Our results in-
dicate that miRNAs act as dynamic regu-
lators that modulate MDH expression in a 
stress-type-dependent manner. These find-
ings align with previous studies highlighting 
posttranscriptional regulation as a crucial 
mechanism for microalgal adaptation to ex-
treme environments (Wang et al., 2016).  
A key discovery was the identification of 
novel-m0533-3p, which selectively binds 
to all three chloroplastic MDH transcripts 
(AF522057.1, EU352600.1, EU352601.1) 
and suppresses their expression (Li et al., 
2023). The specificity of this miRNA for 
chloroplastic MDH suggests a compart-
mentalized regulatory strategy that may 
prioritize mitochondrial energy metabo-
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lism during stress (Huang et al., 2018). 
Such compartmentalization is consistent 
with plant studies in which miRNAs regu-
late organelle functions to maintain cellular 
homeostasis (Nalawade and Singh, 2023). 
Notably, the mitochondrial MDH sequence 
(KT001001.1) showed minimal interaction 
with this miRNA, supporting the hypothesis 
of preferential activation of mitochondrial 
pathways for ATP production under stress. 
This mechanism enables stable β-carotene 
synthesis and osmotic balance.  
The dual regulatory roles of miRNAs, both 
upregulating and downregulating gene ex-
pression, were evident in this study. For 
example, under hypoxic conditions, miR-
206-like sequences likely enhance mMDH 
expression by binding to the 5’UTR region, 
a mechanism previously observed in animal 
systems (Rao et al., 2016). While specula-
tive, this hypothesis could explain enhanced 
mitochondrial ATP output during stress, 
warranting validation via hypoxia-respon-
sive miRNA profiling.  
This contrasts with the canonical miR-
NA-mRNA interaction at the 3’UTR and 
underscores the tissue-specific nature of 
miRNA activity. Such functional flexibili-
ty may explain how D. salina dynamically 
regulates its metabolic network to balance 
energy demands, antioxidant production, 
and carotenoid synthesis under fluctuating 
environmental conditions.  
Our findings reveal a compartment-specif-
ic miRNA regulatory network: mitochon-
drial MDH is spared from miRNA silenc-
ing, ensuring sustained energy production. 
At the same time, chloroplastic MDH is 
downregulated to redirect resources to-

ward beta-carotene synthesis. This aligns 
with studies in Arabidopsis, where miR-
NAs fine-tune organellar functions under 
stress (Lou et al., 2020). For example, nov-
el-m0533-3p-mediated cMDH suppression 
mirrors miR398-mediated silencing of Cu/
Zn superoxide dismutase in plants under 
oxidative stress (Martinez-Vaz et al., 2024). 
The results align with D. salina’s meta-
bolic prioritization of beta-carotene under 
stress (Minarik et al., 2002), but reliance on 
in silico predictions introduces false posi-
tives. Tissue-specific RNA-binding proteins 
(RBPs) and alternative polyadenylation may 
further modulate miRNA accessibility fac-
tors unaddressed here. Comparative studies 
in Chlamydomonas reinhardtii could clarify 
the evolutionary conservation of these regu-
latory motifs (Musrati et al., 1998).  

Conclusion 
Gene expression regulation in D. salina 

is a complex process influenced by various 
environmental factors. The regulation of 
the malate dehydrogenase gene expression 
has a direct impact on cellular function and 
energy metabolism. Given the presence of 
two malate dehydrogenase isozymes in D. 
salina, regulation at different levels during 
transcription, post-transcription, translation, 
and post-translational modification and cre-
ating a proper balance is crucial. Once un-
derstood, these mechanisms go a long way 
in explaining how this small organism sur-
vives and resists.
This study elucidates a miRNA-driven regu-
latory framework enabling D. salina to bal-
ance energy metabolism and stress adapta-
tion. 
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Significant findings highlight the specif-
ic targeting of MDH isoforms by miRNAs 
in different compartments. Notably, novel-
m0533-3p acts as a suppressor of chloro-
plastic MDH during stress conditions, while 
mitochondrial MDH is emphasized for 
maintaining energy homeostasis.
Future studies should focus on integrating 
multi-omics approaches (e.g., transcrip-
tomics and proteomics) to comprehensively 
map miRNA-MDH interactions. Techniques 
like CLIP-Seq can elucidate tissue-specific 
miRNA targeting, whereas CRISPR inter-
ference (CRISPRi) may reveal causal re-
lationships between specific miRNAs and 
stress phenotypes. In addition, comparative 
analyses across microalga species identified 
conserved miRNA regulatory motifs, pro-
viding insights into universal stress adap-
tation mechanisms. These insights advance 
microalgal biotechnology, offering strate-
gies to engineer high-beta-carotene strains 
resilient to environmental stressors. The ca-
rotenoids and other secondary metabolites 
produced under harsh living conditions in D. 
salina are useful and effective in metabolic 
diseases and cancer therapy.
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Abstract
Today, industrialization along with the growth of population has increased wastewater pro-

duction, which has become one of the serious problems for ecosystems and the environment. 
Conventional wastewater treatments (physical or chemical methods) that consume a great deal 
of energy and cost are not so appropriate manner for  removing nutrients like nitrate and phos-
phate, so the application of biological methods, such as using microalgae, has been noticed. 
Wastewater usually contains various compounds such as nitrate and phosphate that can be used 
as culture medium for microalgae (cyanobacteria). Therefore, consumption and elimination 
of these elements from media not only helps to biological treatment of wastewaters but also 
lead to higher productivity of these organisms. In this research, screening artificial wastewater 
elements and their role in the physiological activities of the cyanobacterium Fischerella mus-
cicola have been studied. Our specimen isolated from Caspian Sea and identified molecularly 
according to 16s rRNA. Artificial wastewater treatments were designed by Design-Expert soft-
ware in 12 runs. Various amounts of NaCl, CaCl2, MgSO4, NaNO3 and K2HPO4 was added to 
BG110 medium and microalgae were cultured. Analysis of treatments according to the changes 
of cations (Na+, Ca2+, Mg2+), anions (Cl-, NO3

-, PO4
3-), TDS and COD were performed on loga-

rithmic phase (10th day of the culture). Screening of wastewater elements were done by parreto 
plot and normal plot charts. Results showed that among applied elements in wastewater, NaCl, 
NaNO3 and K2HPO4 have the most effect on growth of Fischerella muscicola and changes of 
cations, anions, TDS, and COD.  As removing nutrients from the media is related to the growth. 
Therefore, wastewater (especially with nitrate and phosphate) could be an appropriate medium 
for microalgae growth and the production of various bioactive compounds.

Keywords: Biological treatment, Fischerella muscicola, Elements, Screening, Wastewater

Introduction
In recent years, increasing population 

along with the process of urbanization and 
industrialization, resulted production and 
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release of wastewater into water resources, 
which has finally become one of the major 
environmental problems (Spennati et al., 
2021). So, by increasing the concentration of 
organic nitrogen and phosphorus in surface 
waters, eutrophication occurs (Goncalves, 
2017; Benitez et al., 2019). In this situation, 
according to the high concentration of solu-
ble nutrients, such as N and P, algal biomass 
increased naturally in water bodies, which 
causes to reduction of oxygen content and 
water quality. Therefore, some countries 
have set certain rules for the reuse or re-
lease of wastewater in water resources. Be-
sides modern improvements in conventional 
wastewater treatment technologies, most 
of the existing treatment plants have some 
difficulties in effectively removing nitrogen 
and phosphorus in the standard format (Tor-
res-Franco et al., 2021). Usually, common 
methods of wastewater treatment based on 
aerobic and anaerobic digestion that use ac-
tivated sludge, coagulation, and sedimenta-
tion operations (Otondo et al., 2018), con-
sume a great deal of energy and chemicals 
(Wang et al., 2016, Satpal & Khambete, 
2016). Although these methods can signifi-
cantly reduce COD (Chemical Oxygen De-
mand), but are not very effective in removing 
nitrogen and phosphorus. Therefore, the ap-
plication of microalgae as a biological meth-
od has been proposed to remove these nutri-
ents. There are various studies on the role 
of cyanobacteria in improving water quality 
which indicates some cyanobacterial spe-
cies such as Anabaena variabilis, Anabaena 
oryza, Tolypothrix ceylonica, Spirulina plat-
ensis are efficient in reducing BOD (Biolog-
ical Oxygen Demand), TDS (Total Dissolve 

Solid) and COD and improving quality of 
different types of wastewater. In this case, 
sewage wastewater treated with a cyanobac-
terial consortium of native strains including 
Phormidium, Limnothrix, Anabaena, Westi-
ellopsis, Fischerella, and Spirogyra showed 
about 99 and 89% reduction of COD and 
BOD.  
In recent years, biological wastewater treat-
ment with microalgae has considered as an 
alternative to conventional methods. The 
potential of microalgae in removing nutrient 
from different wastewater has been shown in 
several studies (Al-Jabri et al., 2021; Yadav 
et al., 2019; Ziganshina et al., 2021). In this 
regard, according to high potential of mi-
croalgae to remove contaminants, they can 
be used in combination with activated sludge 
(as culture media) (Benitez et al., 2019; Kim 
et al., 2010). Microalgae can grow in waste-
water effluents by consuming carbon, nitro-
gen, and phosphorus as the main growth nu-
trients (Chen, 2021) and produce a valuable 
biomass product. So, they can reduce energy 
consumption in comparison to convention-
al treatment methods (Otondo et al., 2018; 
Saptal & Khambete, 2016). 
In several studies, microalgae have a com-
plementary role in wastewater treatment, 
and their high efficiency in removing nutri-
ents has been proven. Even in various proj-
ects, effluent from the secondary treatment 
stage (Kim, 2010), as well as in the stages 
of centrate (Mine, 2011) and also synthesis 
effluents (Benitez et al., 2019; Otondo et al., 
2018), have been used. The proper selection 
of efficient microalgal species with con-
siderable cell growth and high tolerance to 
wastewater is crucial to promote this meth-
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od (Moondra et al., 2020). In this regard, 
applying a microalgae bacterial consortium 
is an important step to eliminate maximum 
nutrients and reduce the cost of wastewater 
treatment which has also been considered in 
recent years (Rada-Ariza, 2017; Ji & Liu, 
2021). The microalgae-bacterial consortium 
is primarily suitable for wastewater treat-
ment, particularly in systems with high lev-
els of nutrients and low organic matter (Fo-
ladori et al., 2018; Krustok et al., 2016). In 
some studies, the microalgae-bacterial com-
position has been used to remove nutrients 
in both raw and artificial wastewater (Khaldi 
et al.,2017; Rada-Ariza et al., 2017). Waste-
water (artificial or raw) can naturally be an 
optimum medium for microalga growth. 
Microalgae use light as an energy source 
and CO2 as a carbon source for their photo-
synthesis and uptake nitrogen and phospho-
rus for their cellular functions. Thus, this 
process reduces the concentration of nutri-
ents in wastewater and contributes to CO2 
mitigation. In addition, microalgae produce 
oxygen, which can be used by aerobic bac-
teria to biodegrade organic pollutants pres-
ent in the wastewater (Otondo et al., 2018; 
Boonchai et al., 2012). 
Among microalgae, cyanobacteria (blue-
green algae) are better candidates for waste-
water treatment, because of their wide 
distribution and viability in various envi-
ronmental changes. The microalga species 
commonly employed in sewage treatment 
experiments are eukaryotic and prokary-
otic blue-green species such as Chlorella 
sp., Scenedesmus sp., Fischerella sp., and 
Oocystis sp., which are more effective in 
purification and bioremediation process-

es (Rasoul-Amini et al., 2014). Although, 
other factors such as growth and resistance 
of these strains to wastewater conditions, 
their abilities to remove various pollutants 
(nitrogen, phosphorus ammonia, calcium, 
magnesium, sodium, potassium and heavy 
metals) have been considered for their selec-
tion (Mohammadi et al., 2018). Application 
of cyanobacteria in wastewater treatment is 
an eco-friendly method with no secondary 
pollution as their biomass can be reused. 
This technology, compared to other physi-
cal and chemical remediation processes, is 
also cost-effective. The high requirement of 
N and P for the growth of cyanobacteria is 
a good reason to consume these nutrients 
in wastewater for multiplication of these 
microorganisms. In this way, assimilated 
nitrogen and phosphorus can be recycled 
into their biomass as bioactive by-products 
(Sood et al., 2015). In this case, cyanobac-
terial species are effective microorganisms 
in improving the quality of different types 
of wastewater by changing their TDS and 
COD.
Fischerella muscicola a heterocystous cy-
anobacterium from Stigonamataceae, was 
one of the dominant species that were iso-
lated according to the purification process-
es from the Caspian Sea and had the great 
ability to grow in wastewater conditions. So, 
screening elements of artificial wastewater 
is performed to select the most effective 
ones for its growth and to remove nutrients 
from wastewater.

Material and methods
Sample collection, isolation, and purifica-
tion
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Samples were collected from differ-
ent parts of the Caspian Sea; Salmanshahr, 
Mahmoodabad, Khazarabad (Mazandarn 
Province), and the Geisom coastline (Gilan 
Province) in the north of Iran. Isolation was 
performed by solid agar plate (Belcher et al., 
1982) in the Research Institute of Applied 
Science of ACECR. Dominant species were 
purified, and among them, Fischerella sp. 
was selected as one of the common. Mass 
cultivation was performed in liquid culture 
in BG110 culture medium (Kaushik, 1987). 
Samples were kept in the culture room of the 
ACECR at 25 ± 2 ºC using LED lamps (2000 
LUX) with duration of 8/16 (L/D). Aeration 
of samples were performed by aquarium air 
pump, Artman HP-4000.
Sequence analysis
The DNA extraction of sample was per-
formed using the Fermentas DNA extraction 
kit (K0512). According to the PCR of the 
16S ribosomal region and sequencing of the 

PCR product by Nubel et al. (2000) sample 
was identified molecularly.
Wastewater treatments
Artificial wastewater (AWW) was prepared 
by dissolving NaCl (10000, 50000 mg/L), 
CaCl2 (35, 100 mg/L), MgSO4 (75, 150 
mg/L), NaNO3 (50, 2000 mg/L), and K2H-
PO4 (6,500 mg/L) in 12 runs which have 
modified by Design expert (Table 1). BG110 
medium with no additives is considered as 
blank(control). The sample was cultured in 
modified runs in 2 L Erlenmeyer flasks and 
incubated in the culture room of ACECR for 
23 days.
Analysis of growth 
Growth was analyzed by measuring biomass 
changes using an optical density (O.D.) 
method every 2 days with three replicates at 
λ 750 nm (spectrophotometer, WPA) for 20 
days (Soltani et al., 2006). Before each test, 
samples were homogenized with an electri-
cal homogenizer (Jenway) to obtain uniform 



47

Plant, Algae, and Environment, Vol. 9, Issue 2, June 2025

cultures, and then sampling was performed.
Growth medium analysis 
Growth medium changes were analyzed two 
times, before adding algal specimens (pre-
liminary study) and at the logarithmic phase 
of algal growth (10th day of cultivation) by 
filtering culture media with filter paper.
Measuring removal changes of cations and 
anions
 Cations; Na+ (ppm), Ca2+ (ppm), and Mg2+ 
(ppm), were analyzed using the ICP-OES 
method (Khan et al., 2022). Anions were 
analyzed by titration with AgNO3 (ASTM, 
2023) for Cl-(%), UV-visible spectropho-
tometry (Shimadzu) at wavelengths of 220 
and 270 nm for NO3- (ppm) and Standard 
Method 4500-P-C (Kurniawati et al., 2025) 
for PO4

3- (ppm). Analysis the nutrient re-
moval percentage was calculated by Do et 
al. (2019) according to equation (1). 
nutrient removal (%) = C1 – C2/ C1 × 100                    
(1)
C1: initial concentration
C2: final concentration
Analysis of TDS and COD
Measuring Total Dissolved Solid (TDS) 
(mg/l), were performed by electroconducti-
vimeter, Chemical Oxygen Demand (COD) 
(mg/l as O2) by Standard method 5220B in 
Kimiazi Analysis Research Lab.
Screening elements
Screening of wastewater elements, includ-
ing NaCl (A), CaCl2 (B), MgSO4 (C), NaNO3 
(D), K2HPO4 (E), was performed according 
to the Parreto Plot and normal plot charts of 
Design-Expert.

Statistical analysis
Statistical analysis was performed by SPSS 

V.24 and Excel. Designing the experiments 
and studying their results was performed by 
Design-Expert V.7.0 software for screening 
the most effective factors in our experiments 
according to the factorial method. Statisti-
cal analysis with three sample replications 
in each test for measurement accuracy was 
done using one-way ANOVA, Post Hoc, and 
Dunken test for homogeneity of variances.

Results
Sequence analysis

The sequence of the 16S rRNA gene 
was identified as Fischerella sp. ISC 123. 
Results of the nucleotide sequences were 
submitted to NCBI under NCBI’s accession 
number OK594059, and compared with the 
recorded sequence in the international gene 
bank, and the percentage of genetic similar-
ity of samples was determined by BLAST. 
In this case, the identification accuracy of 
our sample was confirmed at the genus level 
with Fischerella muscicola with 99.9% sim-
ilarity. 
Growth measurement
According to the biomass changes of Fisch-
erella muscicola in artificial wastewater and 
control runs 2, 11, 10, and 6 that containd 
1% NaCl had the most growth with signifi-
cant difference to control (p≤ 0.05) (Fig.1). 
According to the multiple comparison tests 
(Post Hoc) these runs had significant mean 
differences at logarithmic phase with oth-
ers from 10th day of culture till the 23th 
day. Among them, run 2; NaCl 1%, CaCl2 

100, MgSO4 150, NaNO3 2000, K2HPO4 500 
mg/L; showed the maximum growth, and its 
difference with runs 10, 11, and 6 was signif-
icant (p≤ 0.05). Runs with 5% NaCl had via-
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bility in a stationary phase, but their growth 
decreased noticeably.
Analysis of cations, anions, TDS, and COD
According to the results (Table 2), runs 2, 
6, 10, and 11 had the most effective in de-
creasing Ca+2+ and Mg+2+. Furthermore, run 2 
showed the highest percentage of removing 
anions, with 98% decrease of nitrate on the 
10th day of the culture. 
According to the analysis of TDS and COD, 
run 7 had the most removal of TDS (64.3%), 
meanwhile runs 10 and 11 had the highest 
removal of COD potential (Table 3).
Screening elements
Results of screening wastewater elements 
at the logarithmic phase (10th day) of cul-
turing F. muscicola according to the Pareto 
plot (Fig. 2) and normal plot (Fig. 3) of each 
factor. The comparison showed that NaCl 
(A), NaNO3 (D), K2HPO4 (E), and interac-

tions had the most effect on the studied fac-
tors (Na+, Ca2+, Mg2+, Cl_, NO3

-, PO4
3-, TDS, 

COD) (Table 4). 

Discussion
According to the results of the growth of 

F. muscicola in artificial wastewater, it can 
be concluded that this microalga has signif-
icant growth (more than the blank) in 1% 
NaCl at runs 2, 6, 10, 11. Evaluating other 
research for microalgal growth in different 
salinities was compatible with our results. 
In this way, Hoang Nhat et al. (2019) con-
ducted a study on two marine microalgae, 
Chlorella sp., and Stichococcus sp., in dif-
ferent NaCl concentrations (0.1, 1, 3, and 5 
%) and showed that the maximum growth 
and chlorophyll contents were observed in 
0.1 M and 1% NaCl Furthemore, the results 
of Iranshahi et al. (2014) on Nostoc sp. and 
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Anabaena sp. in various salinities indicated 
that the maximum growth of both species 
was observed in NaCl 1 %. 
Besides NaCl, the common points of these 
treatments were maximum amounts of 
NaNO3(2000 mg/L) and K2HPO4 (500 mg/L) 
together in runs 2 and 6 or each of them in 
runs 10 and 11. As N and P are the main fac-
tors for the growth of microalgae, increasing 
the growth in these treatments can be relat-
ed to these elements. These findings align 
with the research of Sood et al. (2015). They 
particularly studied the growth rate of cya-
nobacterial strains in municipal wastewater 
and their ability to remove nutrients (N, P) 
from these media.
Results of wastewater quality (as culture 
media) revealed that the maximum quantity 
of decreasing cations and nitrate occurred at 
the runs with the highest growth rate, such as 
runs 2 and 11. Therefore, it can be conclud-
ed that decreasing these elements relates to 
the growth condition. Studying the result of 
screening elements of wastewater was also 
compatible with these findings. Among var-
ious elements, NaCl, NaNO3, and K2HPO4 
showed the most effect on the physiologi-
cal activities of the cyanobacterium Fisch-
erella in wastewater, therefore affecting its 
quality. Ajala et al. (2020) investigated the 
relationship between phosphate assimila-
tion and the growth rate on the first day of 
microalgae cultivation in wastewater. They 
found a significant correlation, particularly 
at the logarithmic phase, where rapid phos-
phate removal coincided with the exponen-
tial growth rate. 

Research by Mostafaei et al. (2023) on 

Chlorella vulgaris showed that this microal-
ga can remove and decrease nitrate, nitrite, 
phosphate, COD, and ammonium ions from 
raw municipal wastewater.Thus, it can be 
concluded that wastewater due to its high 
nutrient content could be an appropriate me-
dium for the growth of this strain. Accord-
ing to the researches, microalgal poential to 
remove over 90% of contaminants without 
using bacteria or filtration, making them an 
effective alternative for the biological treat-
ment of raw municipal wastewater. 
As microalgae and cyanobacteria have a high 
demand for nutrients, particularly Nitrogen 
and Phosphate, for their growth, wastewa-
ter with high levels of these nutrients can be 
an applicable medium. In this way, by con-
suming and removing these elements from 
wastewater beside removing contaminants, 
the microalgae have opportunity to produce 
biomass with a concentration of nearly 2.03 
g/l and also effective potential to reduce the 
COD and bacterial content of the wastewa-
ter.   
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Abstract
Phycobiliproteins, including phycocyanin, allophycocyanin, and phycoerythrin, have di-

verse applications in food, cosmetics, and biomedical industries. Consequently, optimizing 
extraction conditions and identifying high-yielding species remain critical areas of study. The 
genus Osmundea is recognized for its significant phycobilin content. This study examines the 
macroalga Osmundea caspica, a member of the phylum Rhodophyta. The specimens of O. 
caspica were collected from the Caspian coasts of Sisangan in Mazandaran Province (Iran). 
The samples were lyophilized and subsequently ground after washing and removal of impu-
rities. The extraction of phycobilins was evaluated using three solvents: distilled water, 100 
mM phosphate-buffered saline (PBS), and 150 mM PBS (all adjusted to pH 7). Two distinct 
protocols: freeze-thaw at –20 °C for 24 hours and ultrasonication at a power of 70 W for 10 
minutes. The results demonstrated that phycoerythrin exhibited the highest concentration 
among the extracted phycobilins, with an average of 0.0453 mg/mL, followed by phycocyanin 
(0.0067 mg/mL) and allophycocyanin (0.0018 mg/mL). Conversely, utilizing distilled water as 
the extraction solvent in conjunction with the Freeze-thaw Pre-treatment resulted in a greater 
extraction efficiency when compared to alternative methods. The results of one-way ANOVA 
showed that the differences in the mean concentrations and purity levels of phycobiliproteins 
among the extraction methods were statistically significant at the 0.05 level. For concentra-
tions of phycocyanin (F:3.551, df: 5, P< 0.05), allophycocyanin (F: 23.984, df: 5, P< 0.05), 
phycoerythrin (F: 23.685, df: 5, P< 0.05), total phycobiliproteins yield (F: 18.489, df: 5, P< 
0.05), purity of phycocyanin (F: 16.109, df: 5, P< 0.05), allophycocyanin (F: 34.155, df: 5, 
P< 0.05) and phycoerythrin (F: 25.353, df: 5, P< 0.05). This study presents promising results, 
particularly regarding the potential of phycoerythrin among the phycobiliproteins of the red 
alga Osmundea caspica, and offers a clear perspective for further exploitation of this species.
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Introduction
Marine biomass is recognized worldwide 

as a valuable carbon source, which can be 
used for food, feed, chemicals, and biophar-
maceuticals of paramount industrial rele-
vance (Merlo et al. 2021). Macroalgae com-
prise a group of marine algae classified into 
three major groups: green algae (Chlorophy-
ta), brown algae (Phaeophyta), and red al-
gae (Rhodophyta). The species diversity of 
macroalgae in the Caspian Sea is lower com-
pared to the Persian Gulf. However, 13 spe-
cies of brown algae and 25 species of red al-
gae have been reported from this sea, which 
are typically distributed along rocky-coastal 
areas (Eshaghzadeh et al., 2023; Stepanian, 
2016). In the Iranian coasts of the Caspian 
Sea, O. caspica is the only confirmed spe-
cies of red algae. Previously, in past classi-
fications, this species was categorized under 
the genus Laurencia (Eshaghzadeh et al., 
2023). Red algae, along with cyanobacteria 
and cryptophytes, are among the primary 
sources of phycobiliproteins (PBPs).
PBPs are water-soluble pigments. They are 
organized into complexes known as phyco-
bilisomes, which are located on the outer 
surface of the thylakoid membrane (Kova-
leski et al., 2022). This complex functions in 
light energy harvesting, as chlorophyll a ex-
hibits maximum absorption at wavelengths 
of 430 nm and 660 nm (Glazer, 1994). Thus 
allowing the photosynthesis and the survival 
of living organisms even at low light inten-
sities (Dumay et al., 2014). Phycobilisome 
captures light energy through its phycobilin 
chromophores and directs it towards reac-
tion centers where it is converted into chem-
ical energy (Roy et al., 2011). Based on their 

structure and properties, specifically on their 
radiation absorption ability, PBPs are divid-
ed into four main types (Pagels et al., 2019), 
include phycoerythrin (PE), which exhibits 
a pink-purple color and λmax = 540-570 
nm; phycocyanin (PC), with a blue color 
and λmax = 610-620 nm; allophycocyanin 
(APC), with a blue-green hue and λmax = 
650-655 nm (Lijassi et al., 2024) and Phy-
coerythrocyanin (PEC), with a magenta 
color and λmax = 560–600 nm (Munier et 
al., 2014). PE, with a total molecular weight 
around 240 kDa, can be classified into four 
classes: B-PE (Bangiophyceae PE, contain-
ing PEB only or containing PEB and phy-
courobilin), C-PE (cyanobacterial-PE), and 
R-PE (Rhodophyta-PE). Indeed, R-PE is 
recognized for its stability towards several 
denaturant agents, namely temperature and 
pH (Galland-Irmouli et al., 2000). As the 
main light-harvesting complexes, phycobil-
isomes represent one of the crucial factors 
of algae and cyanobacteria mass cultures’ 
productivity. It has been demonstrated that 
phycobilisome truncation can enhance bio-
mass accumulation under strong light (Kirst 
et al., 2014). On the other hand, under mod-
est or low irradiance, the antenna truncation 
resulted in growth rates and biomass accu-
mulation reduction (Kirst et al., 2014; Page 
et al., 2012). These proteins are utilized in 
the food industry as natural colorants (soft 
candy, jellies, and ice sherbets), as well as in 
cosmetic and biomedical applications (e.g., 
as fluorescent labels for flow cytometry, im-
munoassays, and more). Additionally, they 
exhibit a wide range of biological activities, 
including antioxidant, antibacterial, antican-
cer (Lijassi et al., 2024), anti-inflammatory, 
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neuroprotective, and immunomodulatory 
(Lauceri et al., 2019). PBPs aqueous ex-
tracts obtained from Arthrospira platensis 
(Spirulina) are approved by EFSA (Regula-
tion (EU) No. 1333/2008 and No. 231/2012) 
as coloring foodstuff. The US FDA classi-
fies PC (21CFR73.1530) as a food natural 
color additive (Lauceri et al., 2019). Various 
methods are available for disrupting the cell 
wall to extract phycobilins. Early protocols 
typically employed physical or chemical 
methods to destroy trichomes and extract 
PBPs by using water as a major solvent 
(Doke, 2005; Eriksen, 2008). These include 
repeated freeze-thaw cycles, ultrasonica-
tion, pressurized distilled water, microwave 
treatment, pulsed electric field, homogeni-
zation, and others. The solvents mentioned 
(distilled water, PPB, PBS, Tris-Cl buffer 
with sodium azide, and sodium chloride) are 
often used as buffers and diluents in various 
scientific techniques, particularly in biologi-
cal and biochemical research. These solvents 
help maintain a stable pH, which is crucial 
for the stability and activity of biological 
molecules like proteins and nucleic acids. 
(Kovaleski et al., 2022). More recent works 
combined chemical and physical methods 
for cell wall disruption and introduced other 

methods like enzymatic cell wall digestion 
or supercritical CO2 extraction (Marzorati et 
al., 2020; Berrouane et al., 2022). The cell 
wall of macroalgae consists of polysaccha-
rides (agar and cellulose), which are an ob-
stacle to cell rupture during the extraction 
of their bioactive compounds (Mittal et al., 
2017). The concentration and quality of 
phycobilins depend on key extraction pa-
rameters, such as the method of cell wall 
disruption, the solvent used, extraction time, 
and separation conditions. The present study 
aimed to investigate the extraction of phyco-
bilins, particularly phycoerythrin, from the 
red macroalga O. caspica, which is native to 
the southern coast of the Caspian Sea. Given 
the biological significance and commercial 
potential of phycobilins as natural pigments 
and fluorescent markers, this research sought 
to evaluate the efficiency of the extraction 
process and to explore the feasibility of uti-
lizing O. caspica as a novel and sustainable 
source of high-value phycobiliproteins.

Material and methods
Sampling

The red macroalga O. Caspica was col-
lected from shallow areas (approximate-
ly 20 to 40 centimeters deep) of the rocky 
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shores in Sisangan, Nowshahr, Mazandaran 
Province, Iran, in mid-March (36.579133 N, 
51.828014 E) (Figure 1). Sampling was car-
ried out.
Preparation and Processing
The samples were washed with marine wa-
ter and then distilled water to remove impu-
rities, and then lyophilized in the dark for 
24 hours. The samples were then ground us-
ing a porcelain mortar, and their weight was 
measured.
Phycoerythrin extraction using ultrasonica-
tion
To compare the effects of solvents in the ex-
traction process, three solvents were used: 
distilled water, 100 mM PBS, and 150 mM 
PBS, all adjusted to pH 7, with a weight-
to-volume ratio (W/V) of 1:25. Additional-
ly, for cell disruption, the performance of 
intracellular content release was compared 
using sequential freeze-thaw cycles and ul-
trasonication methods. Accordingly, one 
set of samples underwent the freeze-thaw 
process, in which the samples were frozen 
at –20 °C for 24 hours and subsequently 
thawed at room temperature. while the sec-
ond set was subjected to ultrasonication. 
During the ultrasonication process, the sam-
ples were placed in an ultrasonic device 
(Tosee Fanavari, 220-Iran) at a power of 70 
W for 10 minutes. The freeze-thaw and ul-
trasonication procedures were repeated for 
three cycles. Between each cycle, the sam-
ples were vortexed for 2 minutes to enhance 
cell disruption and extraction efficiency. The 
solution was then filtered using filter paper 
(Fig. 2) and centrifuged (Universal 320R 
Hettich-Germany) at 8,000 rpm for 10 min-
utes at 4 °C. The supernatant was collected 

for spectrophotometric analysis.
Quantification of Extracted Phycobilins
The quantification of phycobilins was per-
formed using a spectrophotometer (Lambda 
25-Singapur) and modified equations (Lijas-
si et al., 2024). Thus, the amount of each of 
the PC, APC, and PE compounds was calcu-
lated using the following equations.

Phycocyanin (mg∕ml) 

 Allophycocyanin (mg∕ml) 

phycoerythrin (mg∕ml) 

The extraction yield of PBPs was estimat-
ed following the equation of (Silveira et al. 
2007):
PBPs(mg/g)

V is the solvent volume (ml), and DB is dry 
biomass (g).
Purity was determined by using the formula 
below (Minkova et al., 2003):

PC Purity =    

APC Purity =             

PE Purity = 

Statistical analysis
The significant differences between mean 
values were evaluated using one-way anal-
ysis of variance (ANOVA). Tukey’s test 
was performed with SPSS software (version 
26.0) to determine whether there were any 
statistically significant differences at the p< 
0.05 level.
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Results
The macroalga O. caspica (Fig. 3) was 

identified based on its morphological char-
acteristics using microscopic images of in-
ternal structures and external morphological 
features (Rousseau et al., 2017) (Fig. 4).
The quantitative comparison of phycobilins 
indicates that PE had the highest concen-
tration, with an average of 0.0453 mg/mL, 
followed by PC at 0.0067 mg/mL and APC 
at 0.0018 mg/mL, respectively (Figure 5). 
The yield of PBPs varied according to the 
extraction conditions: 1.05–1.76 mg/g (Ta-
ble 1).
The results of one-way ANOVA showed 
that the differences in the mean concentra-
tions (Table 1) and purity levels (Table 2) 
of phycobiliproteins among the extraction 
methods were statistically significant at the 
0.05 level. For concentrations of phycocy-

anin (F:3.551, df: 5, P< 0.05), allophyco-
cyanin (F: 23.984, df: 5, P< 0.05), phyco-
erythrin (F: 23.685, df: 5, P< 0.05), total 
phycobiliproteins yield (F: 18.489, df: 5, P< 
0.05), purity of phycocyanin (F: 16.109, df: 
5, P< 0.05), allophycocyanin (F: 34.155, df: 
5, P< 0.05) and phycoerythrin (F: 25.353, 
df: 5, P< 0.05). 
According to the results presented in Table 
1, the combination of the freeze–thaw pre-
treatment and 150 mM PBS as the extraction 
solvent was significantly more effective for 
phycocyanin (PC) compared to other meth-
ods. In the case of allophycocyanin (APC), 
the freeze–thaw pretreatment combined with 
distilled water yielded the highest recovery. 
For phycoerythrin (PE), the freeze–thaw 
pretreatment in combination with both dis-
tilled water and 150 mM PBS demonstrated 
superior performance relative to the other 
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extraction approaches. Overall, the freeze–
thaw pretreatment coupled with distilled 
water—and to a lesser extent with 150 mM 
PBS—proved to be more efficient than other 
extraction methods for the total recovery of 
phycobiliproteins.

According to Table 2, the purity of phyco-
erythrin (PE), consistent with the concentra-
tion results, was significantly higher when 
the freeze–thaw pretreatment was combined 
with either distilled water or 150 mM PBS, 
compared to the other extraction methods. 
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In contrast, the highest purity was achieved 
for allophycocyanin (APC) using ultrasonic 
pretreatment in combination with distilled 
water. A comparative evaluation of the ob-
tained results with previous studies on red 
macroalgae is presented in Table 3.

Discussion and Conclusion
According to existing scientific reports, 

O. caspica is the only confirmed species of 
red macroalgae along the southern coasts of 
the Caspian Sea (Eshaghzadeh et al., 2023). 
For many years, the red macroalga of the 
Southern Caspian Coast was considered a 
species of the genus Laurencia. However, 
a molecular study conducted in Azerbai-
jan led to the reassignment of this species 
from Laurencia to Osmundea (Rousseau et 
al., 2017). Despite this taxonomic revision, 
no molecular studies have been conducted 
on this species along the Iranian coasts of 
the Caspian Sea. This highlights a research 
gap, suggesting the necessity of molecular 
investigations to confirm its classification in 
Iranian waters. Furthermore, there is signif-

icant potential for broader research efforts 
aimed to exploring additional species of 
red macroalgae along the Southern Caspian 
Coastline.
The absorption spectra of PBPs may vary 
significantly among different species of 
algae and cyanobacteria, and even between 
strains of the same cyanobacterial genus. 
Therefore, specific wavelengths and 
absorption coefficients used to determine 
phycobilins for particular strains are 
generally not applicable to other strains 
(Zavřel et al., 2018). This study is no 
exception in this regard; however, it utilizes 
the standard methods from previous studies, 
with an awareness of the potential errors 
specific to the species O. caspica. The 
optimal extraction method depends on 
the type of phycobiliprotein, the type of 
algae, and the operational conditions. One 
common approach for extracting molecules 
is the use of solvents. PBPs are hydrophilic 
proteins. Therefore, common solvents used 
for their extraction are water or buffers, 
which also serve to control the pH of 
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the environment. These solvents include 
sodium phosphate buffer, acetate buffer, 
citrate buffer, carbonate buffer, Tris-HCl 
buffer, and ethylenediaminetetraacetic acid 
(EDTA) (Kovaleski et al., 2022). Sharmila 
et al. (2017) tested extraction methods using 
various buffers and pH levels, demonstrating 
that phosphate buffer (pH 7.2) combined with 
freeze-thawing at temperatures between -20 
°C and -25 °C yielded the best results. Sintra 
et al. (2021) used phosphate buffer for C-PC 
extraction and reported a 90% recovery rate. 
Nguyen et al. (2016) compared different 
concentrations of phosphate buffer (20 
mM, 50 mM, and 0.1 M) with tap water 
and distilled water, finding that the 20 mM 
phosphate buffer with pH 7.1 showed the 
best results for PE in Mastocarpus stellatus. 
Sudhakar et al. (2015) investigated the 
extraction of PE and PC from Gracilaria 
crassa using distilled water, seawater, 
and phosphate buffer (0.1 M). The results 
demonstrated that distilled water performed 
best for extracting PE (0.35 mg/g) and PC 
(0.18 mg/g). Based on these studies, one of 
the objectives of the present study was to 
investigate the effect of the solvent on the 
extraction process. The difference in the 
amount of extracted PE compared to other 
phycobilins, as well as the relatively higher 
efficiency of distilled water as a solvent for 
extraction, aligns with the findings of similar 
studies (Sudhakar et al., 2015; Karuppannan 
et al., 2024). The superior performance of 
distilled water in extracting phycobilins 
compared to PBS solutions can be analyzed 
from several perspectives. One key factor 
is the difference in osmotic pressure 
between the extracellular environment and 

the intracellular space, which is higher in 
distilled water than in saline solutions. This 
increased osmotic pressure can lead to greater 
cell turgescence, facilitating the release 
of intracellular components. Additionally, 
PBPs are hydrophilic and exhibit higher 
solubility in pure aqueous environments like 
distilled water compared to saline solutions. 
Furthermore, extraction techniques such 
as ultrasonication and freeze-thaw cycles 
may be more effective in distilled water, 
as its salt-free and purer nature prevents 
interference from ionic interactions, thereby 
enhancing the efficiency of the extraction 
process. On the other hand, the freeze–thaw 
pretreatment, which has been employed 
in most similar studies, has proven to 
be a more efficient method compared to 
ultrasonication. Although Pereira et al. 
(2020) and Mittal et al. (2019) reported 
favorable outcomes for ultrasonication or its 
combination with maceration, their findings 
focused on specific red algae species and 
may not be generalized to all biomass 
types. Moreover, in studies such as that 
by Sharmila et al. (2017), the freeze–thaw 
method—particularly at lower temperatures 
(−20 °C to −25 °C)—showed comparable or 
superior performance in terms of pigment 
recovery. In our experimental conditions, 
the freeze–thaw method not only provided 
higher purity and yield of phycobiliproteins 
but also preserved their structural integrity 
more effectively. Additionally, it required 
no special equipment and maintained a 
gentle processing environment, minimizing 
the risk of denaturation. Accordingly, the 
present study identifies the freeze–thaw 
pretreatment combined with distilled water 
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as the most effective overall approach 
for phycobiliprotein extraction. Factors 
influencing the extraction of phycobilins 
include species potential, initial preparation, 
and the type of solvent-extraction protocol. 
Numerous studies have examined and 
confirmed the significance of each of these 
factors (Lijassi et al., 2024; Eshaghzadeh et 
al., 2023; Sudhakar et al., 2015; Karuppannan 
et al., 2024). The findings of the present 
study are no exception to these three 
factors. Hence, to improve the extraction 
of phycobilins, broader comparative studies 
across different species, initial preparation 
processes, and more refined modifications 
in the choice of solvent or protocol are 
suggested. Given the high demand for 
PBPs in various industries, research and 
development in improving extraction and 
purification methods continues to ensure 
the sustainable and economic utilization of 
these natural resources.
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Abstract
Water and soil pollution represents a fundamental human issue globally. Heavy metals are 

one of the basic pollutants of water and soil, which can be caused and intensified by anthro-
pogenic activities, including mining, transportation, and various industries. Due to the toxic 
effects of these metals on the environment, organisms, and human health, the removal or re-
covery of these elements from polluted environments is of particular importance. Different 
methods and techniques have been applied to remove these pollutants, among which, biore-
mediation has received considerable attention due to its eco-friendly and cost-effectiveness. 
Bioremediation uses the ability of varoius organisms to decrease or remove pollutants. Algae 
are among the organisms that show significant capabilities in removing different types of con-
taminants, especially heavy metal ions. Phycoremediation is an application of algae as bio-re-
mediate agents, and depends on factors such as light, temperature, pH, type of pollutant, and 
type of taxon. Various strains are known for their ability to remediation of heavy metals. The 
most basic methods in removing pollutants using algae are biosorption into the cell (absorp-
tion) and surface biosorption (adsorption), which uses the living or non-living mass of algae. 
New techniques, such as using transgenic microalgae, are among the effective detoxifying and 
rapidly growing methods. Genetic engineering for algae gene editing and gene silencing ben-
efits various technologies and tools such as reporter genes, Cre-lox recombination, and CRIS-
PR-Cas systems, modular cloning toolkits, regulatory elements, promoters, vectors, restriction 
enzymes, and post-transcriptional gene silencing technologies. Other novel techniques whose 
future on an industrial scale seems promising are the combined use of microalgae and bacteria, 
biochar addition, and biogenic nanomaterials generated from algae. These innovative methods 
offer sustainable and cost-effective solutions for environmental pollution, therefore boosting 
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Introduction
Environmental pollution is considered 

one of the most critical issues around the 
world. Due to the rapid expansion of urban-
ization, industrialization, manufacturing, 
and production of hazardous by-products, 
this problem is getting worse by the day and 
ultimately endangers environmental sus-
tainability and human health (Rahman et al., 
2021). Heavy metals (HMs) are regarded as 
one of the most considerable pollutants in 
soil and aquatic ecosystems (Ahmad et al., 
2021). The natural weathering of minerals, 
as well as recent industrial and anthropo-
genic activities, led to the discharge of sig-
nificant levels of HMs into the environment 
(Malik and Kaur Sandhu, 2023). Mining, 
smelting, and refining processes produce 
enormous amounts of contaminants and 
HMs, which could be distributed through 
the air and negatively affect the nearby ar-
eas (Izydorczyk et al., 2021). Furthermore, 
industrial emissions and automotive indus-
tries, fossil fuels, sewage sludge, household 
activities, and excessive use of pesticides 
and insecticides significantly contribute to 
polluting the environment with HMs (Briffa 
et al., 2020) (Fig. 1). Contamination of the 
terrestrial and aquatic ecosystems with HMs 
poses a significant hazard to the environ-
ment and therefore human health as a result 
of direct toxic impacts on living organisms 

and further potential for increased exposure 
along the food chain (Huang et al., 2018). 
Numerous severe health conditions, includ-
ing cancer, lung adenomas, kidney failure, 
neurological disorders, inhibition of enzyme 
activity, and infertility, are among the ail-
ments caused by HM exposure (Alengebawy 
et al., 2021; Żukowska and Biziuk, 2008).
The rising content of HMs, their persistence 
in the environment, and potentially deleteri-
ous effects on ecological and human health 
demand effective remediation technologies. 
There are several methods for removing 
HMs from contaminated environments, in-
cluding water and soil. Traditional meth-
ods such as ion exchange, chemical pre-
cipitation, coagulation, conventional and 
advanced oxidation, ultrafiltration, and elec-
trochemical removal have some limitations 
like usability for limited metal ions, con-
suming higher energy and chemicals, and 
producing a considerable amount of sludge/ 
solid waste (Razzak et al., 2022). Therefore, 
developing more effective and environmen-
tally friendly solutions is very important. 
Today, the emergence of affordable methods 
in which no cutting-edge technology is re-
quired have attracted substantial attention 
as these methods are economically feasible 
for developed and developing countries. 
Among the new technologies used to reduce 
HMs is bioremediation, which has received 
greater attention from various communities 

public health. Studies on the development and implementation of these techniques are ongoing 
in the world. In this paper, the ability of 78 algae species to remove 18 heavy metals has been 
reviewed. 

Keywords: Absorption, Bioremediation, Heavy metals, Phycoremediation, Transgenic mi-
croalgae
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because of its low-cost, simple technology, 
and availability. 
Bioremediation is a  process that applies 
organisms’ potential to clean up environ-
mental contamination, such as wastewater, 
ground or surface waters, sediments, and 
soils (Boopathy, 2000). The bioremedia-
tion technique uses bacteria, fungi, plants, 
and algae to break down, remove, change, 
immobilize, or detoxify different chemicals 
and physical pollutants from the ecosystem 
(Bala et al., 2022). When biological agents 
interact with pollutants, bioremediation oc-
curs spontaneously without the aid of any 
chemical catalysts. To facilitate and speed 
up the bioremediation process, it is vital to 

generate the optimum environmental condi-
tions (Verma and Jaiswal, 2016). The char-
acteristics of the contaminated site have a 
great impact on the bioremediation process. 
The bioremediation process is influenced 
by various factors, including soil texture, 
permeability, pH, water-holding capacity, 
temperature, nutrients, and oxygen content 
(Boopathy, 2000). 
Phycoremediation, the application of al-
gae to remove contaminants from the envi-
ronment, is recognized as an effective and 
affordable bioremediation technique. Mi-
croalgae are recognized as effective biore-
mediation agents in soil due to their rapid 
growth, large surface area, strong affinity 
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for metal binding, high tolerance for vari-
ous contaminants, and eco-friendly nature 
(Chugh et al., 2022; Yeheyo et al., 2024). 
They utilize natural metabolic processes 
through techniques such as bioconcentration 
and volatilization to detoxify and remediate 
polluted soils effectively. Their effective-
ness lies in their ability to accumulate and 
degrade contaminants within their cellular 
structures. Furthermore, microalgae release 
exudates that support the growth of benefi-
cial microorganisms in the soil, enhancing 
soil health and resilience (Yeheyo et al., 
2024). Phycoremediation of water systems 
is primarily recognized for its ability to pu-
rify water contaminated with HMs and/ or 
other pollutants; however, it can be inte-
grated into a broader bioremediation strat-
egy that benefits both aquatic and terrestrial 
environments. Since the biomass produced 
by algae following the phycoremediation 
is used as feedstock to generate biofuel and 
other valuable products, algal-based biore-
mediation is strongly favored (Razaviarani 
et al., 2022)such as wastewater treatment 
and bioenergy industries. Microalgae are 
mixotrophic microorganisms that have po-
tential to utilize nitrogen and phosphate (nu-
trients. Therefore, this review encompases 
the current research, advancements, and 
modern approaches in the phycoremediation 
of heavy-metal-polluted environments. 
Phycoremediation of HMs
Algae are considered a new biological step 
that is a permanent, environmentally friend-
ly, and affordable procedure for environ-
mental protection (Touliabah et al., 2022). 
The merits of bioremediation based on algae 
are better production of biomass and high-

er aggregation ability, detoxification, and 
degrading xenobiotics and contaminants. 
Moreover, the produced biomass during 
bioremediation is cost-efficient in the field 
of clean energy.
Different species of algae, including macro- 
and micro-algae, diatoms, and cyanobacte-
ria, can remove pollutants from soil and wa-
ter. As an example, the ability of Neochloris 
aquatica in removing HMs including chro-
mium (Cr) (88.7%), lead (Pb) (75.9%), nick-
el (Ni) (87.6%), cadmium (Cd) (60.4%), co-
balt (Co) (52.9%), zinc (Zn) (84.9%), and 
copper (Cu) (54.4%) is considerable (Tamil 
Selvan et al., 2020). The study conducted 
by Ajayan et al. (2015) revealed the im-
portant effect of Scenedesmus sp. on reduc-
ing the HM pollution of Zn (65–98%), Pb 
(75–98%), Cu (73.2–98%), Cr (81.2–96%), 
and nutrients such as phosphate (>95%) and 
nitrate (>44.3%). Marine macroalgae such 
as Caulerpa lentillifera can also be used as 
inexpensive adsorbents to remove Cd, Cu, 
Zn, and Pb from aqueous solutions (Apira-
tikul and Pavasant, 2006). Table 1 lists 78 
microalgae strains with the ability to biore-
mediate 18 HMs. 
Diatoms, another group of microalgae, can 
bioremediate diverse forms of effluents 
due to their cellular structure and adaptive 
techniques. It may absorb and use different 
micro- and macro-elements (Marella et al., 
2020). Cylindrotheca closterium be able to 
remove phthalate acid esters (PAEs) from 
surface sediments (Gao and Chi, 2015).  
Moreover, the herbicide mesotrione (an ar-
omatic ketone) can be absorbed by Halam-
phora (Amphora) coffeiformis (Valiente 
Moro et al., 2012). Nitzschia sp., another 
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diatom genus, causes fast decomposition of 
organic matter by enhancing aerobic bacteri-
al activity (Yamamoto et al., 2008). Besides, 
Nitzschia sp. and Skeletonema costatum can 
degrade the highly toxic polyaromatic hy-
drocarbons (PAHs) from sediments (Hong 
et al., 2008).
Some reports on the biodegradation of pesti-
cides by algae can be found in the literature 
(Megharaj et al., 2000, 1994, 1987). El-Best-
awy et al. (2007) illustrated the ability of the 
strains Synechococcus, Oscillatoria, Nostoc, 
Cyanothece, and Nodularia in degrading of 
the pesticide Lindane (chlorinated aliphat-
ic pesticide). Kuritz and Wolk (1995) also 
reported the ability of Nostoc ellipsospo-
rum and Anabaena sp. to degrade Lindane. 
Moreover, soil isolates of Chlorella vulgar-
is, Synechococcus elongatus, Tetradesmus 
obliquus (Scenedesmus bijugatus), Leptol-
yngbya tenuis (Phormidium tenue), Leptol-
yngbya (Phormidium) foveolarum, Kamp-
tonema animale (Oscillatoria animalis), 
Desmonostoc (Nostoc) muscorum, and Nos-
toc linckia can detoxify and break down the 
organophosphate insecticides (Megharaj et 
al., 1994, 1987). 
Acid mine drainage bioremediation using 
algae  
Acid Mine Drainage (AMD) is considered 
an important source of HM pollution around 
the world that endangers species of plants, 
animals, and human life (Samal et al., 2020). 
Different strains of algae, especially mi-
croalgae, are used as a cost-efficient way of 
removing HMs these days. Some genera and 
species, such as Spirulina, Scenedesmus, 
Chlorella, Cladophora, Anabaena, Oscil-
latoria, Stigeoclonium, Phaeodactylum tri-

cornutum, non-living Caulerpa lentillifera, 
Ulothrix zonata, and Turbinaria ornate, are 
among the hyper-accumulator and hyper-ad-
sorbent microalgae from AMD. They also 
produce a lot of alkalinities, which is im-
portant during HM precipitation treatment 
(Apiratikul and Pavasant, 2006; Bwapwa et 
al., 2017; Kandasamy et al., 2021). The life-
less biomass of Spirulina sp. can absorb Zn 
(86–98%), iron (Fe) (100%), Cu (38–76%), 
and Pb (40–78%) and decrease the acidity of 
AMD by enhancing the pH, as AMD has the 
acidic nature (Bwapwa et al., 2017). Stigeo-
clonium spp. are freshwater algae that can 
thrive in mine water containing high lev-
els of HMs, particularly Zn, and are recog-
nized for their effectiveness in removing Zn 
from the environment (Pawlik-Skowrońska, 
2001).
The bioremediation mechanism of algae 
Algae from various species can be used to 
break down organic contaminants. HM re-
moval from the environment can also be 
accomplished through bioremediation. It is 
worth mentioning that the terms bioreme-
diation and biodegradation are increasingly 
interchangeable (Singh, 2019). However, 
biodegradation is considered a natural pro-
cess in nature, while bioremediation is com-
monly controlled to optimize the conditions 
for microorganisms. This process can take a 
few to several months to finish and is carried 
out in situ or ex-situ. In-situ bioremediation 
includes the remediation of pollutants at the 
site, while ex-situ involves the removal of the 
pollutants in another site (Gavrilescu, 2010). 
Ex-situ bioremediation can be employed if 
the environmental conditions are unfavor-
able for the growth of microorganisms (Al-
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ori et al., 2022)chlorosis, growth inhibition, 
root tips browning, and death of plant. Soil 
pollutants such as hydrocarbon and heavy 
metals are absorbed by crops and such ends 
up being consumed by human posing health 
risk like cancer and respiratory abnormally. 
Conventional methods of remediation such 
as chemical and physical methods are very 
expensive and not sustainable. Excavation, 
which is a type of physical method, merely 
shifts the pollutant from one site to anoth-
er. Bioremediation is a biological method of 
reclaiming polluted soils. Bioremediation 
is less expensive and more sustainable and 
safer when compared to the conventional 
methods of reclamation of polluted environ-
ment. This biological method of remediation 
is an extremely attractive, important, and 
productive alternative for cleaning, debug-
ging, managing, and rehabilitating and con-
sequently ameliorating contaminated envi-
ronments judicious utilization of microbial 
activities. The rate, at which the waste sub-
stances are degraded, is usually dictated by 

competitiveness among biological agents, 
sub-optimal supply of essential nutrients, 
unconducive abiotic conditions (in forms 
of temperature, aeration, pH, and moisture. 
It usually included biological augmentation 
(bioaugmentation), during which some se-
lected strains of microorganisms are added 
to the process to accelerate the breakdown 
of a pollutant (Herrero and Stuckey, 2015). 
Algae species take the HMs by biosorption 
and bioaccumulation (Singhal et al., 2021). 
During biosorption, certain living/non-liv-
ing microorganisms or biomass can passive-
ly concentrate and bind pollutants onto their 
cellular structure through the physiochemi-
cal process and immobilize them (Volesky 
and Holan, 1995). In other words, biosorp-
tion is the term used to describe the capacity 
of biological materials to ingest HMs phys-
ically or chemically from wastewater (Fard 
et al., 2011). While bioaccumulation is car-
ried out in the following stages of biosorp-
tion and involves living organisms (Hlihor et 
al., 2017). Bioaccumulation and biosorption 
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are subcategories of bioremediation. During 
biosorption, metals are retained through in-
teractions with functional groups on the cell 
surface (e.g., adsorption, ion exchange). 
This process can be affected by variables, 
including ionic strength, environmental 
acidity, biomass concentration, temperature, 
particle size, and other ions (Pagnanelli et 
al., 2003; Vilar et al., 2005). It can occur 
with both living and non-living biomass, as 
it does not depend on cell metabolism. In 
contrast, bioaccumulation involves both in-
tra- and extracellular processes. Therefore, 
only live biomass can perform bioaccumu-
lation (Coelho et al., 2015). Algae species 
often filter nutrients, heavy metals (depend-
ing on the species), and other minerals from 
wastewater through a combination of bio-
sorption and their ability to absorb, adsorb, 
and bioaccumulate. Since these species need 
nutrients to grow, algae growth occurs as 
these elements are removed from wastewa-
ter. Some are absorbed by outer cells, while 
others are absorbed by inner cells (Bwapwa 

et al., 2017) (Fig. 2).
Most algae species (e.g., Euglena sp., 
Scenedesmus sp., Oscillatoria sp., Chlorel-
la sp.) absorb contaminants and immobilize 
them within their cell structure; these mi-
croalgae biomass can later be used as ener-
gy-enriched biomass for biofuel generation 
(Kandasamy et al., 2021).
In some strains, HMs or other nutrients 
with positive charges are clasped negative-
ly charged groups (e.g., —OH/ hydroxyl, 
—COOH/ carboxyl, —SH/ sulphydryl, —
NH2/ amino, —PO3H2/ phosphoryl) on the 
surface layer of the cell wall (adsorption) 
(Spain et al., 2021). While in several mi-
croalgae, these pollutants are taken into the 
algae cell (absorption) (Gündoğdu and Türk 
Çulha, 2023). These algae accumulate HMs 
in their intercellular regions or their vacuoles 
(Torres, 2016). Spirogyra algal species had a 
removal efficiency of 20 mg/L Cu (II) (58-
85%) at 30 minutes (Bishnoi et al., 2004). 
Cladophora glomerata and Oedogonium 
rivulare are among the species with the abil-
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ity to remove Co, Pb, Ni, Mn, Cd, Cr, Cu, 
and Fe from contaminated water (Vymazal, 
1984). Ulothrix zonata and Turbinaria or-
nata are also considered great adsorbents of 
HMs (Nuhoglu et al., 2002; Vijayaraghavan 
et al., 2005).
Factors affecting phycoremediation
Algae can remove HMs in a variety of ways. 
This process depends on the metal type, tax-
on, pH, light, and temperature (Mehta and 
Gaur, 2005; Novis and Harding, 2007). As 
algae are sensitive to light and tempera-
ture, the efficiency of phycoremediation can 
also be affected through different seasons. 
For example, the best time to remove HM 
sand contamination by algae is variable de-
pending on the season (Brake et al., 2004; 
Elbaz-Poulichet, 2000). The strain of algae 
is also important in the process of phycore-
mediation. Some strains are more resistant 
to pollutants and have a higher ability to de-
toxify the HMs. An ecological study of soil 
in polluted sites with insecticides shows the 
replacement of sensitive species with resis-
tant species (Megharaj et al., 1999). As pre-
viously mentioned, the non-living biomass 
of microalgae has the ability to adsorb pol-
lutants. It was revealed that the biomass of 
non-living algae adsorbs a higher amount of 
metals than that of living algae (Mehta and 
Gaur, 2005). 
Methods to increase the efficiency of HM re-
mediation by algae
To increase the efficiency of phycoremedi-
ation, some modern technologies have been 
developed in recent years. Chemical and 
molecular techniques are among the meth-
ods being used in this regard to manage al-
gae to boost their productivity.

Transgenic algae to improve bioremediation 
Genetic engineering for algae gene editing 
and gene silencing benefits various tech-
nologies and tools such as reporter genes, 
Cre-lox recombination, and CRISPR-Cas 
systems, modular cloning toolkits, regulato-
ry elements, promoters, and vectors, restric-
tion enzymes, and post-transcriptional gene 
silencing (PTGS) technologies (Fajardo et 
al., 2020). Data required for finding the ap-
propriate genes to manipulate genetically is 
supplied by multi-omics approaches, includ-
ing data of proteomics, transcriptomics, ge-
nomics, interactomics, and metabolomics, 
for various strains of algae, and is freely ac-
cessible on different online platforms (Ran-
jbar and Malcata, 2022)due to accelerated 
anthropogenic activities, and is nowadays, 
a matter of serious global concern. Remov-
al of such inorganic pollutants from aquatic 
environments via biological processes has 
earned great popularity, for its cost-effec-
tiveness and high efficiency, compared to 
conventional physicochemical methods. 
Among candidate organisms, microalgae 
offer several competitive advantages; phy-
coremediation has even been claimed as 
the next generation of wastewater treatment 
technologies. Furthermore, integration of 
microalgae-mediated wastewater treatment 
and bioenergy production adds favorably to 
the economic feasibility of the former pro-
cess—with energy security coming along 
with environmental sustainability. Howev-
er, poor biomass productivity under abiot-
ic stress conditions has hindered the large-
scale deployment of microalgae. Recent 
advances encompassing molecular tools for 
genome editing, together with the advent of 
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multiomics technologies and computation-
al approaches, have permitted the design of 
tailor-made microalgal cell factories, which 
encompass multiple beneficial traits, while 
circumventing those associated with the 
bioaccumulation of unfavorable chemicals. 
Previous studies unfolded several routes 
through which genetic engineering-mediat-
ed improvements appear feasible (encom-
passing sequestration/uptake capacity and 
specificity for heavy metals.
Transporters of HMs in algae cell mem-
branes are important options in genetic en-
gineering. These membrane proteins, which 
are responsible for the transportation and 
tolerance of metals, basically Co, Cd, Fe, 
Ni, Mn, and Zn, are known as metal-tol-
erance proteins (MTP) (Ram et al., 2019). 
Some species of microalgae, including Mi-
crocystis aeruginosa, Spirulina sp., Syn-
echococcus sp., Nostoc sp., Anabaena flos-
aquae, and Fischerella, carry MTP genes. 
These genes, which are involved in the reg-
ulation of metal ion storage, are expressed 
in response to higher concentrations of HMs 
like Cu (Kandasamy et al., 2021). Different 
families of MTP genes are known in Chlam-
ydomonas. More than eleven gene families 
are responsible for encoding the metal ion 
transporters (Rajamani et al., 2007). Up-
regulation of CRMTP4, which encodes the 
metal transporter, enhances the tolerance of 
Chlamydomonas reinhardtii to the toxicity 
of Cd; these microalgae strains with upreg-
ulated CRMTP4 had 2.81-3.06 times higher 
ability in bioaccumulation of Cd in com-
parison to wild Chlamydomonas reinhardtii 
(Ibuot et al., 2017).
However, the authors indicated that waste-

water-adapted strains, Parachlorella kes-
sleri, Parachlorella hussii, and Jaagichlo-
rella (Chlorella) luteoviridis, had also higher 
tolerance to Cd, Zn, Al, and Cu than the 
wild strain of Chlamydomonas reinhardtii. 
These three microalgae also revealed higher 
tolerance and bioaccumulation of Cd than 
the upregulated CRMTP4 Chlamydomonas 
reinhardtii. This indicated clearly that the 
mechanisms of adapted strains, which can be 
attributed to their oxidative stress tolerance 
and upregulation of several genes, over-
come the upregulation of a single MTP gene 
(Ibuot et al., 2017), and therefore, producing 
transgenic microalgae with multi-metal tol-
erance and absorption should be prioritized 
in genetic engineering of algae.
In Auxenochlorella protothecoides, high 
expression of metal transporter genes, the 
Nramp family, has been shown under Cd 
stress (Lu et al., 2019). These genes also 
play a role in Cd tolerance of Chlamydo-
monas acidophila (Puente-Sánchez et al., 
2018). In Chlamydomonas reinhardtii, a 
member of the Nramp family, DMT1, is re-
sponsible for the transportation of Cd, Cu, 
Fe, and Mn (Rosakis and Köster, 2005). 
Moreover, it seems that MTP1 in Chlam-
ydomonas reinhardtii encodes the vacuolar 
membrane protein which plays a critical role 
in detoxification of Cd and homeostasis of 
Zn (Blaby-Haas and Merchant, 2012). Phos-
phate transporters in Microcystis aeruginosa 
play a role in accumulation of arsenate (As)  
due to similar chemical structure of organic 
phosphate and As, lead to indiscrimination  
between these two elements (Wang et al., 
2019).
Expression of acr3 gene, which encodes 
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protein ACR3 present in vacuole membrane 
of Pteris vittata and involved in bioaccu-
mulation of As, in Chlamydomonas rein-
hardtii resulted in 1.5-3 times enhancement 
of As accumulation; the ability of this re-
combinant strain in bioaccumulation of As 
was even higher in environment with re-
duced phosphate (Ramírez-Rodríguez et al., 
2019). Microalga Euglena gracilis exposed 
to Cd, Hg, and Pb revealed an enhancement 
in membrane transporter Major Facilita-
tor Superfamily, P(1B)-type ATPases, Cd/
Zn-transporting ATPase, as well as pro-
teins participating in microalgae stress re-
sponse and thiol-rich proteins which play 
an important role in metal chelation, at pro-
teome level (Khatiwada et al., 2020). Cell 
surface engineering can also be employed 
to enhance the algae-based bioremediation 
of HMs. Transgenic Chlamydomonas rein-
hardtii due to plasma membrane-anchored 
metallothionein polymer expression re-
vealed enhanced capacityfor Hg (II) binding 
compared to wild strains (He et al., 2011).
It has also been shown that microalgae under 
HM stress upregulate particular HM-binding 
organic molecules in order to reduce the HM 
toxicity through the formation of chelated 
forms (Balzano et al., 2020). Transformed 
Chlamydomonas reinhardtii with increased 
synthesis of cysteine (HAL2 gene) revealed 
5-times enhancement in metal binding ca-
pacity (Rajamani et al., 2007; Ranjbar and 
Malcata, 2022)due to accelerated anthropo-
genic activities, and is nowadays, a matter 
of serious global concern. Removal of such 
inorganic pollutants from aquatic environ-
ments via biological processes has earned 
great popularity, for its cost-effectiveness 

and high efficiency, compared to conven-
tional physicochemical methods. Among 
candidate organisms, microalgae offer sev-
eral competitive advantages; phycoremedia-
tion has even been claimed as the next gener-
ation of wastewater treatment technologies. 
Furthermore, integration of microalgae-me-
diated wastewater treatment and bioenergy 
production adds favorably to the economic 
feasibility of the former process—with ener-
gy security coming along with environmen-
tal sustainability. However, poor biomass 
productivity under abiotic stress conditions 
has hindered the large-scale deployment of 
microalgae. Recent advances encompassing 
molecular tools for genome editing, together 
with the advent of multiomics technologies 
and computational approaches, have permit-
ted the design of tailor-made microalgal cell 
factories, which encompass multiple benefi-
cial traits, while circumventing those asso-
ciated with the bioaccumulation of unfavor-
able chemicals. Previous studies unfolded 
several routes through which genetic engi-
neering-mediated improvements appear fea-
sible (encompassing sequestration/uptake 
capacity and specificity for heavy metals. 
Moreover, the engineering of microalgae to 
enhance the activity of particular enzymes to 
tolerate HM can be effective. For example, 
in Chlorella vulgaris chromate reductase 
play a role in the reducing toxic of Cr (VI) 
to the less dangerous trivalent chromium (Cr 
(III)). Therefore, it enhances the tolerance of 
microalgae cells against Cr toxicity (Yen et 
al., 2017).  
Biochar addition for optimizing the phy-
coremediation 
As biochar is enriched with nutritional com-
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ponents, a combination of biochar made 
from plant biomass with microalgae could 
aid in the cleanup of HMs and other hazard-
ous materials. Microalgae may use biochar 
nutrients to boost their biomass. The biore-
mediation process is carried out simultane-
ously by biochar and metal-tolerant algae. 
This promising and long-term technique 
could result in more efficient phycoreme-
diation with energy-containing biomass of 
microalgae. With the appropriate energy 
conversion method, this energy-enriched 
biomass of microalgae is able to generate 
a greater volume of ethanol (Anae et al., 
2021).
Biogenic nanomaterials generated from al-
gae
Biogenic nanoparticles are those that are 
produced using biological organisms. Bi-
ologically produced nanoparticles have 
emerged as a viable substitute for chemi-
cally synthesized nanoparticles due to their 
nontoxicity. Several biogenic nanoparticles 
have been produced in recent years with 
possible applications in medicine and envi-
ronmental cleanup. Biogenic nanoparticles 
like palladium nanocrystals, nano-magnets, 
biogenic manganese oxide (BioMnOx), and 
biogenic iron species have been shown to be 
successful at removing a variety of micro-
pollutants, HMs, refractory pollutants, and 
halogenated chemicals. Nano-bioremedia-
tion has the potential to be a more effective, 
safer, environmentally friendly, and cost-ef-
ficient technology, with a significant long-
term impact on the field of environmental 
remediation (Kumari et al., 2019). 
Algal nanocomposites reveal novel mate-
rials that mix algae-based polymers with 

nanoparticles. One of the main applications 
of these nanocomposites is in the remediation 
of wastewater. The application of alginate, 
derived from algae, as the base material in 
wastewater treatment is a green alternative 
to conventional fossil-fuel-based treatment 
methods (Lakshmi et al., 2023). Researchers 
have developed a Fucus vesiculosus-based 
sorbent for the effective removal of HMs, 
including Pb (II), Cd (II), Cu (II), and Zn 
(II) from polluted waters (Demey et al., 
2018). Moreover, the ability of algal-made 
nanocomposites for the removal of Cr (VI) 
and iron compounds has been approved (Wu 
et al., 2018). In another research, a higher 
ability of Sargassum glaucescens and chi-
tosan/polyvinyl alcohol (PVA) nano-fiber 
membrane at pH 6 for biosorption of Ni in 
a continuous system has been shown (Es-
maeili and Aghababai Beni, 2018). The 
world nanomaterials market, including algal 
nanocomposites, reached 10.88 billion US 
dollars in 2022 and is projected to show a 
14.8% growth by 2030 (Yuan et al., 2023). 
Algae and bacterial consortia
Microalgae combine with other aerobic or 
anaerobic microorganisms to form a mi-
crobial community. Compared with a sin-
gle microorganism, a combination of algae 
and bacteria can work together to eliminate 
organic and inorganic pollutants. The com-
bined use of microalgae and bacteria can be 
complementary and synergistic to obtain 
better pollutant degradation efficiency (Fu 
and Secundo, 2016). For instance, consortia 
of algae and bacteria mix revealed a signif-
icant removal rate of 92.6% for 1,2-dichlo-
roethane from the petroleum industry (Al-
hajeri et al., 2024). On the one hand, algae 
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photosynthesis produces oxygen, which is a 
key electron acceptor for heterotrophic bac-
teria to break down pollutants into organic 
matter. On the other side, bacteria provide 
carbon dioxide and other stimulating media 
to support the photosynthetic autotrophic 
growth of their partners (Subashchandrabose 
et al., 2011). The mixing of different strains, 
i.e., algae-bacteria, can produce a synergistic 
effect, and the microbial population usually 
acts more effectively than a single strain or 
species. Some advantages of co-cultivation 
are the robustness to environmental fluctu-
ations, the stability of the limbs, the abili-
ty to survive periods of nutrient limitation, 
to share metabolites, and resistance against 
other species. The self-oxidation of these 
natural systems that have been tested is ben-
eficially used to remediate many pollutants 
(Muñoz and Guieysse, 2006). Compared 
with traditional engineering technology, it 
is more economically and technologically 
superior (Subashchandrabose et al., 2013). 
Contemporary molecular technology, com-
bined with the careful selection of specific 
members of the microbial community, will 
enable the creation of autonomous systems 
that serve the dual purpose of contaminant 
removal and metabolite production. 
The bacteria-algae complex is effective in 
dealing with harmful pollutants, and their 
efficiency in the bioremediation of HMs has 
been established (Boivin et al., 2007). The 
normal growth and metabolism of algae re-
quire small amounts of various metals, but 
higher levels of the same metals are toxic. In 
this way, algae communities in symbiotic in-
teractions can absorb and detoxify the met-
als. The process of detoxification involves 

physical or chemical adsorption, active ab-
sorption into the cell for a small amount, 
covalent bonding, ion exchange, surface 
precipitation, redox reaction, or cell surface 
crystallization (Muñoz and Guieysse, 2006; 
Subashchandrabose et al., 2013). Besides the 
HMs, the mentioned methods can be used by 
microalgae to degrade organic contaminants 
such as black oil, naphthalene, acetonitrile, 
phenol, thiocyanate, benzopyrene, azo com-
pounds (Mahdavi et al., 2015; Muñoz and 
Guieysse, 2006; Ryu et al., 2015; Subash-
chandrabose et al., 2013), and toxic pesti-
cides including methion, quinophos, methyl 
parathion, DDT, atrazine, and α-endosulfan 
(Subashchandrabose et al., 2013, 2011).
Compared with individual microorganisms, 
microalgae and bacterial consortia can ef-
fectively detoxify inorganic and organic 
contaminants and remove nutrients from 
wastewater. The resource competition and 
pollutant reduction cooperation between 
the two microbial associations will deter-
mine the success of the consortium project 
while harnessing the biotechnology poten-
tial of the partners (Subashchandrabose et 
al., 2011).

Conclusion and perspectives
Bioremediation of polluted environments 

has attracted much attention during the last 
decades. As it is considered an eco-friendly 
and cost-effective method of treating con-
taminated water and soil, it has some advan-
tages over other known existing techniques. 
Microalgae with an excessive tolerance 
to HMs and a high capacity for metal ion 
binding are the best accumulators of metals. 
Algae species such as Chlorella, Spirulina, 
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Spirogyra, Scenedesmus, and many oth-
ers are applied for the disposal of Cr, Cu, 
Ni, Cd, Hg, Sp, Pb, and other HM ions. Al-
though using algae for bioremediation of 
HMs could encounter some problems, such 
as poor adaptability of exogenous microal-
gae with contaminated sites, and is affected 
by the intensity of light, operation time, and 
temperature, yet using various techniques, 
including ex-situ bioremediation and bio-
augmentation, can help to manage these 
limitations. Moreover, some new methods 
and technologies have been employed to 
enhance the efficiency of phycoremediation. 
Biochar addition, applying genetically engi-
neered and transgenic microalgae with MTP 
genes, and consortia of microalgae together 
or with other microorganisms, are among 
the new techniques that are rapidly growing 
to provide a greener world.
In spite of numerous advantages, some 
novel techniques encounter challenges, in-
cluding scaling up. Most phycoremediation 
processes employing genetically engineered 
algae are still confined to laboratory settings 
(Pradhan et al., 2022). The main limitations 
include low product yields and high culti-
vation costs (Wang et al., 2024). In order 
to address these challenges, it is necessary 
for future studies to focus on the expansion 
and development of universal cloning tool-
kits and rapid expression kits, which enable 
gene editing tools to be applicable to a broad 
range of microalgae (Webster et al., 2024).

Algae-bacteria consortia have a notable ad-
vantage over other monoculture techniques 
in resistance to contamination (Naseema 
Rasheed et al., 2023). This feature makes 

them suitable for application in open ponds 
(Su et al., 2022). Moreover, the partnership 
offers practical benefits in harvesting the 
biomass due to enhanced flocculation effi-
ciency when certain strains of bacteria are 
co-cultured with algae (Ravindran et al., 
2016). Recent developments have focused 
on creating optimized consortia through 
careful selection of species and engineering. 
It has been shown that identification of the 
most effective combination, with some engi-
neered consortia, achieves over 90% remov-
al for various pollutants (Cai et al., 2024). 
These systems not only perform better in 
terms of pollutant removal but also gener-
ate valuable biomass that can be used for 
various applications (Navarro and Caipang, 
2024; Torres et al., 2024).
The implementation of advanced algal 
bioremediation techniques remains pri-
marily in developmental stages, with most 
successful applications in controlled con-
ditions. A key challenge in scaling up these 
technologies is a requirement for a better un-
derstanding of how microalgae-microalgae 
or microalgae-bacteria co-culture perform 
in open systems over a long time (Al-Jabri 
et al., 2020). The future success of these ap-
plications will depend on continued research 
to optimize performance and validate long-
term effectiveness, particularly in outdoor 
conditions where environmental factors can 
significantly impact system performance 
(Al-Jabri et al., 2020). Natural symbiotic 
relationships between algae and native mi-
croorganisms show promise, particularly for 
water treatment applications, as these part-
nerships can effectively utilize carbon diox-
ide and minerals while producing oxygen 
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without generating waste products (Toulia-
bah et al., 2022). In Iran, there is inadequate 
information about the implementation of 
these methods. However, these approaches 
could be applicable in local environments.
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