Phormidium sp. improves growth, auxin content and nutritional status of wild barley (Hordeum spantaneum L.)

Document Type : Original Article

Authors

1 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University.

2 Faculty of life sciences, Shahid beheshti university, Tehran, Iran

3 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

4 Shahid Beheshti University

Abstract

Cyanobacteria are oxygenic, photosynthetic prokaryotes with the unique potential to enhance plant growth, development, and productivity. These microorganisms have the ability to stimulate plant growth by producing growth-inducing phytohormones and increasing the solubility of soil nutrients. In the present study, the plant growth-promoting potential of Phormidium sp. on the growth indices of wild barley seedlings was evaluated. Phormidium sp. is a filamentous and non-heterocystous cyanobacterium. Filaments are unbranched and usually in fine, smooth, layered microscopic or macroscopic mats. The results showed that dry weight and length of root and shoot, the content of nitrogen (2%), potassium (2%), and auxin (8%) phytohormone of wild barley seedlings treated with Phormidium sp. had a significant increase compared to the control group. Accordingly, the use of Phormidium sp. as a plant growth-promoting cyanobacteria seems a promising alternative to chemical fertilizers.

Keywords


Aziz MA and Hashem MA. (2003). Role of cyanobacteria in improving the fertility of saline soil. Pakistan Journal of Biological Sciences. 6: 1751-1752. Doi:10.3923/pjbs.2003.1751.1752.
Balk J and Pilon M. (2011). Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends in Plant Science. 16: 218-226. Doi:10.1016/j.tplants.2010.12.006.
Balzan S, Johal GS, Carraro N. (2014). The role of auxin transporters in monocots development. Frontiers in Plant Science. 15 (5): 393. Doi:10.3389/fpls.2014.00393.
Bergman B, Gallon JR, Rai AN, Stal LJ. (1997). N2 Fixation by non-heterocystous cyanobacteria. FEMS Microbiology Reviews. 19 (3): 139-185. Doi:10.1111/j.1574-6976.1997.tb00296.x.
Boopathi T, Balamurugan V, Gopinath S, Sundararaman M. (2013). Characterization of IAA production by the mangrove cyanobacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis. Plant Growth. 32: 758-766. Doi: 10.1007/s00344-013-9342-8.
Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E. (2007). Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiology Letters. 276: 1-11. Doi:10.1111/j.1574-6968.2007.00878.x.
Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R. (2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Frontiers in Environmental Science. 6: 49. Doi:10.3389/fenvs.2018.00049.
Desikachary TV. (1959). Cyanophyta. Indian Council of Agricultural Research, New Delhi. 684 pp.
Cheng K, Frenken T, Brussaard CPD, Waal DB. (2019). Cyanophage propagation in the freshwater cyanobacterium Phormidium is constrained by phosphorus limitation and enhanced by elevated pCO2. Frontiers in Microbiology. 10: 617. Doi:10.3389/fmicb.2019.00617.
Ge L, Peh CYC, Yong JWH, Tan SN, Hua L, Ong ES. (2007). Analyses of gibberellins by capillary electrophoresis–mass spectrometry combined with solid-phase extraction. Journal of Chromatography A. 1159 (1): 242-249. Doi:10.1016/j.chroma.2007.05.041.
Ghahremaninejad F, Hoseini E, Jalali S. (2021). The cultivation and domestication of wheat and barley in Iran, a brief review of a long history. The Botanical Review. 87: 1-22. Doi:10.1007/s12229-020-09244-w.
Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, Von Korff M, Varshney RK, Graner A, Valkoun J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany. 60: 3531-3544. Doi:10.1093/jxb/erp194.
Guo TR, Zhang GP, Zhang Y. (2007). Physiological changes in barley plants under combined toxicity of aluminum, copper, and cadmium. Colloids and Surfaces. 57: 182-188. Doi:10.1016/j.colsurfb.2007.01.013.
Gupta AB and Agarwal PR. (1973). Extraction, isolation and bioassay of a gibberellin-like substance from Phormidium foveolarum. Annals of Botany. 37: 737-741. Doi:10.1093/oxfordjournals.aob.a084742.
Hogland DR and Arnon DI. (1950). The water culture method for growing plants without soil. California Agriculture Experimental station circular. 347: 461-465.
Hu C, Liu Y, Song Y, Zhang D. (2002). Effect of desert soil algae on the stabilization of fine sands. Journal of Applied Phycology. 14: 281- 292. Doi:10.1023/A:1021128530086.
Hussain A, Krischke M, Roitsch T, Hasnain S. (2010). Rapid determination of cytokinins and auxin in cyanobacteria. Current Microbiology. 61: 361-369. Doi:10.1007/s00284-010-9620-7.
Hussain A and Hasnain S. (2011). Phytostimulation and biofertilization in wheat by cyanobacteria. Journal of Industrial Microbiology and Biotechnology. 38: 85-92. Doi:10.1007/s10295-010-0833-3.
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwa HS, Saxena AK. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology. 23: 101487. Doi:10.1016/j.bcab.2019.101487.
Mendes R, Garbeva P, Raaijmakers JM. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews. 37: 634 -663. Doi:10.1111/1574-6976.12028.
Mutale-joan C, Redouan B, Najib E, Yassine K, Lyamlouli K, Laila S, Zeroual Y, Hicham EA. (2020). Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports. 10 (1): 2820. Doi:10.1038/s41598-020-59840-4.
Rezaee M, Ghotbi Ravandi AA, Hassani SB, Soltani N. (2019). Phormidium improves seed germination and growth parameters of Trifolium alexandrinum in hexadecane-contaminated soil. Journal of Phycological Research. 3 (1): 312-325. Doi:10.29252/JPR.3.1.312.
Singh S. (2014). A review of possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. Applied Microbiology. 117 (5): 1221-1244. Doi:10.1111/jam.12612.
Singh H. 2015. Nutrient Use Efficiency: from Basics to Advances. Springer India.
Shiraishi F, Hanzawa Y, Okumura T, Tomioka N, Kodama Y. (2017). Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics. Scientific Reports. 7:11805. Doi:10.1038/s41598-017-12303-9.
Souza Rd, Ambrosini A, Passaglia LMP. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology. 38 (4): 401-419. Doi:10.1590/S1415-475738420150053.
Wang D, Yang S, Tang F, Zhu H. (2012). Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiology. 14: 334-342. Doi:10.1111/j.1462-5822.2011.01736.x.
Willis BF, Rodrigues BF, Harris PJC. (2013) The Ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences. 32: 1-20. Doi: 10.1080/07352689.2012.683375.
Yang J, Kloepper JW, Ryu CM. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science. 14: 1-4. Doi:10.1016/j.tplants.2008.10.004.
Younesi H, Hassani SB, Ghotbi-Ravandi AA, Soltani N. (2019). Plant growth promoting the potential of Phormidium sp. ISC108 on seed germination, growth indices, and photosynthetic efficiency of maize (Zea mays L.). Journal of Phycological Researches. 3 (2): 375-385. Doi:10.29252/JPR.3.2.375.
Zarezadeh S, Riahi H, Shariatmadari Z, Sonboli A. (2020). Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. Journal of Applied Phycology. 32: 1231-1241. Doi: 10.1007/s10811-019-02028-9.