Bioaccumulation and the Effect of Selenate Concentration on Growth and Photosynthetic Pigment Content of Spirulina platensis

Document Type : Original Article

Authors

1 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran

2 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran

Abstract

Selenium (Se) is a necessary microelement for microalgae growth. Moreover, it might directly act and cause a decrease in primary production in microalgae. Nowadays, there is a great focus on preparations of Se-enriched products. In the current study, the effects of various selenate concentrations on Spirulina were evaluated as a primary stage to large-scale production of Se-enriched S. platensis. Zarrouk medium supplemented to investigate the stimulatory/inhibitory effects of selenate on growth at various concentrations. Biomass dry weight and cell mass were measured on OD550. Thereafter, inhibitory and algicidal concentrations were determined. Furthermore, its effects on morphology and changes of some important pigments in response to the metal challenge were investigated, too. While the results showed that at 5 and 10 ppm concentrations growth was supported, the dry weight of microalgae decreased at selenate levels above 50 ppm. Besides, the inhibitory and lethal effects of selenate were at 100 ppm and 300 ppm, respectively. In addition, morphological changes were observed at this concentration. Additionally, chlorophyll, carotenoid, and phycobiliproteins showed a stimulatory effect at 5-50 ppm, 10 ppm, and 10 ppm, respectively. Moreover, Spirulina uses for foods production because some chemicals are unique compounds. Simple cultivation method and high quality of its protein, and no toxic effects, cause its feasibility for large-scale production.

Keywords


Babaei A, Ranglova K, Malapascua JR, Masojidek J. (2017). The synergistic effect of Selenium (selenite, –SeO32−) dose and irradiance intensity in Chlorella cultures. AMB Express. 7 (56). Doi:10.1186/s13568-017-0348-7.
Belokobylsky AI, Mosulishvili LM, Frontasyeva M, Kirkesali EI, Gundorina SF, Aksenova NG. (2004). Accumulation of selenium and chromium in the growth dynamics of Spirulina platensis. Journal of Radioanalytical and Nuclear Chemistry. 259 (1): 65-68. Doi:10.1023/B:JRNC.0000015807.53132.c0.
Chen JZ, Tao XC, Xu J, Zhang T, Liu ZL. (2005). Biosorption of lead, cadmium, and mercury by immobilized Microcystis aeruginosa in a column. Process Biochemistry. 40 (12): 3675-3679. Doi:10.1016/j.procbio.2005.03.066.
Chen TF, Zheng WJ, Wong YS, Yang F. (2008). Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. Journal of Integrative Plant Biology. 50 (1): 40-48. Doi:10.1111/j.1744-7909.2007.00600.x.
Costa ACA and Franca FP. (2003). Cadmium interaction with microbial cells, cyanobacterial cells, and seaweeds: Toxicology and biotechnological potential for wastewater treatment. Marine Biotechnology. 5: 149-156. Doi:10.1007/s10126-002-0109-7.
Fournier E, Adam-Guillermin C, Potin-Gautier M, Pannier F. (2010). Selenate bioaccumulation and toxicity in Chlamydomonasreinhardtii: Influence of ambient sulfate ion concentration. Aquatic Toxicology. 97: 51-57. Doi:10.1016/j.aquatox.2009.12.003.
Frontasyeva MV, Pavlov SS, Mosulishvili L, Kirkesali E, Ginturi E, Kuchava N. (2009). Accumulation of trace elements by biological matrice of Spirulina platensis. Ecological Chemistry and Engineering S. 16 (3): 277-285.
Geoffroy L, Gilbin R, Simon O, Floriani M, Adam C, Pradines C, Cournac L, Garnier-Laplace J. (2007). Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquatic Toxicology. 83 (2): 149-158. Doi:10.1016/j.aquatox.2007.04.001.
Gojkovic A, Vilchez C, Torronteras R, Vigara J, Gomez-Jacinto V, Janzer N, Gomez-Ariza JL, Marova I, Garbayo I. (2014). Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. The Scientific World Journal. Doi:10.1155/2014/401265.
Gojkovic Z, Garbayo I, Ariza JLG, Marova I, Vilchez C. (2015). Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Research. 7: 106-116. Doi:10.1016/j.algal.2014.12.008.
Khademi S and Oraghi Ardebili N. (2017). Changes in antioxidant systems and biomass in response to selenate in blue-green microalgae Spirulina platensis, Cyanophyta. Journal of Plant Process and Function. 6 (20): 9-15.http://jispp.iut.ac.ir/article-1-592-en.html.
Li ZY, Guo SY, Li L. (2003). Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology. 89: 171-176. Doi:10.1016/S0960-8524(03)00041-5.
Mane PC, Kadem DD, Chaudhari RD. (2013). Biochemical responses of some freshwater algal species to selenium: A laboratory study. Central European Journal of Experimental Biology. 2 (4): 27-33.
Morlon H, Fortin C, Adam C, Garnier-Laplace J. (2006). Selenite transport and its inhibition in the unicellular green alga Chlamydomonas reinhardtii. Environmental Toxicology and Chemistry. 25: 1408-1417. Doi:10.1897/2512039.1.
Pelah D and Cohen E. (2005). Cellular response of Chlorella zofingiensis to exogenous selenium. Plant Growth Regulation. 45: 225-232. Doi:10.1007/s10725-005-3230-6.
Schiavon M, Moro I, Pilon-Smits EAH., Matozzo V, Malagoli M, Vecchia FD. (2012). Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure, and antioxidant enzymes and metabolites. Aquatic Toxicology. 122–123: 222-231. Doi:10.1016/j.aquatox.2012.06.014.
Schiavon M, Pilon-Smits EAH, Citta A, Folda A, Rigobello MP, Vecchia FD. (2016). Comparative effects of selenate and selenite on selenium accumulation, morphophysiology, and glutathione synthesis in Ulva australis. Environmental Science and Pollution Research. Doi:10.1007/s1136-016-6649-6.
Sharma G, Kumar M, Ali MI, Jasuja ND. (2014). Effect of carbon content, salinity, and pH on Spirulina platensis for phycocyanin, allophycocyanin, and phycoerythrin accumulation. Microbial and Biochemical Technology. 6 (4): 202-206. Doi:10.4172/1948-5948.1000144.
Soeprobowati TR and Hariyati R. (2014). Phycoremediation of Pb+2, Cd+2, Cu+2, and Cr+3 by Spirulina platensis (Gomont) Geitler. American Journal of BioScience. 2 (4): 165-170. Doi:10.11648/j.ajbio.20140204.18.
Sun X, Zhong Y, Huang Z, Yang Y. (2014). Selenium accumulation in unicellular green alga Chlorellavulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. Plos One. 9 (11): e112270. Doi:10.1371/journal.pone.0112270.
Umysova D, Vitova M, Douskova I, Bisova K, Hlavova M, Cizkova M, Machat J, Doucha J, Zachleder V. (2009). Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biology. 9: 58. Doi:10.1186/1471-2229-9-58.
Zheng Y, Li Z, Tao M, Li J, Hu Z. (2017). Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production. Aquatic Toxicology. 183: 21-27. Doi:10.1016/j.aquatox.2016.12.008.