Cytotoxic Activity of Cytoplasmic Extraction and Medium Culture of Nodularia harveyana on Melanoma Cell Line

Document Type : Original Article

Authors

1 Professor, Faculty of biological Sciences and Biotechnology, Shahid Beheshti university

2 Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University,Tehran, Iran.

3 Faculty of biology Sciences and Biotechnolgy, Shahid Beheshti university, Tehran

4 Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University,Tehran, Iran.

Abstract

Cyanobacteria produce a wide range of biologically active compounds. Among the cyanobacterial metabolites, cytotoxins are of particular interest because of their potential to kill target cancer cells. The present study was undertaken to isolate Nodularia harveyana from Ardakan County (Yazd Province, Iran) soil and determine the cytotoxic effect of cytoplasmic extract and medium culture of its on the human melanoma cell line. Nitrate-free BG11 medium was used for preparing an axenic monoalgal culture of Nodularia harveyana ISB112. In addition, 3- to 5-week-old cytoplasmic extraction and medium were used for the cytotoxic study on human melanoma cell lines (B16). The cytotoxic effects of cytoplasmic extract, and medium culture at the concentration ranging from 5 to 50 μg.ml-1 increased significantly in a concentration-dependent manner (p<0.05). The 4- and 5-week-old cytoplasmic extract of Nodularia harveyana ISB112 was more effective than the 3-week-old extract and the viability percent of cells were 52.57% and 52.35%, respectively. The results showed that the medium culture activity in the fifth week of growth was higher than other periods and the cell's viability percent was 48.84% (p ≤ 0.05). Overall, the results suggested that Nodularia harveyana ISB112 could kill tumor cells that can be used as a treatment for cancer disease.

Keywords


Abed RMM, Dobretsov S, Sudesh K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology. 106 (1): 1-12. Doi: 10.1111/j.1365-2672.2008.03918.x.
Ahmed WA, El-Semary NA, Abd El-Hameed OM, El Tawill G, Ibrahim DM. Bioactivity and cytotoxic effect of cyanobacterial toxin against hepatocellular carcinoma. Journal of Cancer Science and Therapy. 9 (6): 505-511. Doi: 10.4172/1948-5956.1000468.
Barchi J, Bortin T, Furusawa E, Patterson G, Moore R. (1983). Identification of a cytotoxin from Tolypothrix byssoidea as tubericin. Phytochemistry. 22: 2851-2852. Doi: 10.1007/978-3-319-12009-6.
Beattie K, Kaya K, Codd G. (2000). The cyanobacterium Nodularia in PCC 7804, of freshwater origin, produces L-Har (2) nodularin. Phytochemistry. 54 (1): 57-61. Doi: 10.1016/50031942(00)00045-5.
Costa M, Costa-Rodrigues J, Fernandes MH, Barros P, Vasconcelos V, Martins R. (2012). Marine cyanobacteria compound with anticancer properties: a review on the implication of apoptosis. Marine Drugs. 10 (10): 2181-2207. Doi: 10.3390/md10102181.
Desikachary TV. (1959). Cyanophyta. Indian Council of Agricultural Research, New Delhi. 684 pp.
Ekwall B. (1999). Overview of the final MEIC results: II. The in vitro–in vivo evaluation, including the selection of a practical battery of cell tests for the prediction of acute lethal blood concentrations in humans. Toxicology in Vitro. 13: 665-673. Doi: 10.1016/s0887-2333(99)00061-2.
Evans S, Casartelli A, Herreros E, Minnick D, Day C, George E, Westmoreland  C. (2001). Development of high throughput in vitro toxicity screen predictive of high acute in vivo toxic potential. Toxicology in Vitro. 15: 579-584. Doi: 10.1016/s0887-2333(01)00064-9.
Ezhilarasi A and Anand N. (2009). Phylogenetic analysis of Anabaena spp. (Cyanobacteria) using sequences of 16S rRNA gene. Australian Journal of Basic and Applied Sciences. 3 (4): 4026-4031.
Gademann K and Portmann C. (2008). Secondary metabolites from cyanobacteria: complex structure and powerful bioactivities. Current Organic Chemistry. 12 (4): 326-341. Doi:10.2174/138527208783743750.
Gunasekera SP, Owle CS, Montaser R, Luesch H, Paul VJ. (2011). Malyngamide 3 and Cocosamides A and B from the marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. Journal of Natural Products. 74 (4): 871-876. Doi: 10.1021/np10080015.
Hrouzek P, Kopecky J, Salat J, Marsalek B, Lukesova A. (2005). Cytotoxic effect of soil cyanobacterial extracts to mammal cell lines YAC-1 and WEHI. Czech Phycology. 5: 79-90. Doi:10.1016/j.ecoenv.2015.10.020.
Horobin RW. (1982 a). Histochemistry: an explanatory outline of histochemistry and biophysical staining. Butterworths, London. 245 pp.
Horobin RW. (1982 b). Selection of optimum tetrazolium salts for use in histochemistry: the value of structure-staining correlations. Histochemistry Journal. 14 (2): 301-310. Doi:10.1007/BF01041222.
Jaki B, Zerbe O, Heilmann J, Sticher O. (2001). Two novel cyclic peptides with antifungal activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). Journal of Natural Products. 63: 154-158. Doi:10.1021/np000297e.
John DM, Whitton BA, Brook AJ. (2002). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge University Press, London UK.702 pp.
Komarek J. (2013). Cyanoprokaryota 3. Teil / 3rd part: Heterocytous Genera. Springer Spectrum, Germany. 1015 pp.
Laamanen M, Gugger M, Lehtimaki J, Haukka K, Sivonen K. (2001). Diversity of toxic and nontoxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Applied Environmental Microbiology. 67 (10): 4638-4647. Doi:10.1128/AEM.67.104638-4647.2001.
Mackintosh R, Dalby K, Campbell D, Cohen P, Cohen P, Mackintosh C. (1995). The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Letters. 371 (3): 236-240. Doi: 10.1016/0014-5793(95)00888-g.
Mevers E, Liu W, Engene N, Mohimani H, Byrum T, Pevzner PA, Dorrestein PC, Spadafora C, Gerwick WH. (2011). Cytotoxic veraguamide, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria maragaritifera. Journal of Natural Products. 74 (5):928-936. Doi:10.1021/np200077f.
Moffitt M, Blackburn S, Neilan B. (2001). rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. International Journal of Systematic and Evolutionary Microbiology. 51: 505-512. Doi: 10.1099/00207713-51-2-505.
Moffitt M and Neilan BA. (2004). Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Applied and Environmental Microbiology. 70 (11): 6353-6362. Doi:10.1128/AEM.70.11.6353-6362.2004.
Nair S and Bhimba BV. (2013). Bioactive potency of cyanobacteria Oscillatoria spp. International Journal of Pharmacy and Pharmaceutical Sciences. 5 (2): 611-612.
Ohta T, Sueoka E, Lida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim SJ, Carmichael WW, Fujiki H. (1994). Nodularin a potent inhibitor of protein phosphatase 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Research. 54 (24): 6402-6406.
Patterson G, Smith C, Kimura L, Britton B, Carmeli S. (1993). The action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motility and the Cytoskeleton. 24 (1): 39-48. Doi: 10.1002/cm.970240105.
Patterson G, Larsen L, Moore R. (1994). Bioactive natural products from blue-green algae. Journal of Applied Phycology. 6: 151-157. Doi: 10.1007/BF02186069.
Prescott GW. (1970). Algae of the western Great Lake Area. WM. C. Brown company publishers, USA. 977 pp.
Pushparaj B, Pelosi E, Juttner F. (1999). Toxicological analysis of the marine cyanobacterium Nodularia harveyana. Journal of Applied Phycology. 10: 527–530.
Rai A, Chaturvedi R, Kumar A. (2018). Proteomic evidence for microcystin-RR-induced toxicological alterations in mice liver. Scientific Reports. 8 (1): 1310. Doi: 10.1038/541598-018-19299-w.
Rangaswamy G. (1966). Agricultural Microbiology. Asia Publishing House, London. 413 pp.
Rehakova K, Mares J, Lukesova A, Zapomelova E, Bernardova K, Hrouzek P. (2014). Nodularia (Cyanobacteria, Nostocaceae): A phylogenetically uniform genus with variable phenotypes. Phytotaxa. 172 (3): 235-246. Doi: 10.11646/phytotaxa.172.3.4.
Riahi H, Shariatmadari Z, Khangir M, Seyed Hashtroudi M. (2017). Cyanobacterial culture as a liquid supplement for white button mushroom (Agaricus bisporus). Journal of Phycological Research. 1 (1): 39-47.
Saito K, Konno A, Ishii H, Saito H, Nishida F, Abe T, Chen C. (2001). Nodularin –Har: a new nodularin from Nodularia. Journal of Natural Products. 64 (1): 139-141. Doi:10.1021/np000299z.
 Sanger F and Coulson A. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology. 94 (3): 441-448. Doi:10.1016/0022-2836(75)90213-2.
Sithranga Boopathy N and Kathiresan K. (2010). Anticancer drugs from marine flora: An overview. Journal of Oncology. 2010:1-18. Doi:10.1155/0101214186.
Sladowski D, Steer S, Clothier R, Balls M. (1993). An improved MTT assay. Journal of Immunological Methods. 157 (1-2): 203-207. Doi:10.1016/0022-1759(93)90088-o.
Stanier R Y, Kunisawa R, Mandal M, Cohen-Bazire G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews. 35: 171-205. Doi: 10.1128/br.35.2.171-205-1971.
Stockert JC, Blazquez-Castro A, Canete M, Horobin RW, Villanueva A. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica. 114 (8): 785-796. Doi: 10.1016/j.acthis.2012.01.006.
Surakka A, Sihvonen LM, Lehtimaki J M, Wahlsten M, Vuorela P, Sivonen K. (2005). Benthic Cyanobacteria from the Baltic Sea contain Cytotoxic Anabaena, Nodularia, and Nostoc Strains and an Apoptosis-Inducing Phormidium Strain. Environmental Toxicology. 20 (3): 285-92. Doi: 10.1002/tox.20119.
Volk RB. (2005). Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. Journal of Applied Phycology. 17: 339-347. Doi: 10.1007/s10811-005-7292-7.
Wase N and Wright P. (2008). Systems biology of cyanobacterial secondary metabolite production and its role in drug discovery. Expert Opinion on Drug Discovery. 3 (8): 903-929. Doi: 10.1517117460441.3.8.903.
Wehr J, Sheath R, Thorp J. (2002). Freshwater Algae of North America: Ecology and Classification. Aquatic Ecology Press, USA. 936pp.
Welker M and Von Dohren H. (2006). Cyanobacterial peptides-Nature’s own combinatorial biosynthesis. FEMS Microbiology Reviews. 30 (4): 530-563. Doi:10.1111/j.1574-6976.2006.00022.x.
Zanchett G and Oliveira-Filho EC. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins. 5 (10): 1896-1917. Doi:10.3390/toxins5101896.