The Impact of Combined Alkalinity and Time Pretreatments on Light-Harvesting System in Tresterial Cyanobacterium Fischerella sp. FS 18 (Oscillatorials, Cyanophyta)

Document Type : Original Article

Authors

1 Azad University gorgan

2 Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran

Abstract

Possibility of change in the phycobilisome status, photosynthetic pigments, photosynthetic ratios, and photosynthetic parameters of soil cyanobacteria Fischerella sp. FS 18 investigated. Neutral and extreme alkaline pH (7, 9), and short time incubation including 20, 40, and 60 minutes treatments. After purification, cyanobacteria were subjected to extreme alkaline treatment for one hour at 20, 40, and 60 minutes intervals. Colorimetric assays of phycocyanin, allophycocyanin, phycoerythrin, chlorophyll) and a comparison of the combined effect of time and alkalinity on photosynthetic ratio performed. Indeed, the photosynthesis-light curves compared with direct measurements. The results showed that the combined treatment of time and alkalinity after 20 minutes of inoculation significantly increased the performance of the photosystem and stability of the phycobilins. While, under the 40 min and both neutral and alkaline treatments, the yield of photosystem II, increased the production of the photosystem I, and significantly the linear fraction of the photosynthesis-light curve. Although, the needed energy to achieve maximum photosynthesis was reduced. Further, the maximum photosynthesis was completely different at 40 min pretreatment and without pretreatment. Furthermore, the results show no specific regularity and trend at 20 and 60 minutes of treatment. Thus, the production of light collecting-antennas is influenced by both time and alkalinity treatments. In consequence, 60 minutes or fewer treatment times, cause a significant change in the structure and performance of the photosynthetic apparatus. While alkaline treatments at a short time significantly save energy and enhance photosynthesis.

Keywords


Abdullah NS, Muhamad S, Omar IC, Abdullah H. (2013). Determination of antioxidant and cytotoxic activities of red seaweed (Gracilaria manilaensis) against different cancer cell lines. Journal of Food Science and Engineering. 3: 616-624.

Adaikalaraj G, PatricRD, Johnson M, Janakiraman N, Babu A. (2012). Antibacterial potential of selected red seaweeds from Manapad coastal areas, Thoothukudi, Tamil Nadu, India. Asian Pacific Journal of Tropical Biomedicine. 2: 1077-1080. Doi:10.1016/S2221-1691(12)60364-5.

Ainane T, Abourriche A,Kabbaj M, ElkoualiM, Bennamara A, Charrouf M, Talbi M, Lemrani M. (2014). Biological activities of extracts from seaweed Cystoseira tamariscifolia: antibacterial activity, antileishmanial activity, and cytotoxicity. Pharmaceutical Research. 6 (4): 607-611.

Airanthi MKWA, Hosokawa M, Miyashita K. (2011). Comparative antioxidant activity of edible Japanese brown seaweeds. Journal of Food Science. 76 (1): 104-111. Doi: 10.1111/j.1750-3841.2010.01915.x.

Balouiri M, Sadiki M, Koraichi Ibnsouda S. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6 (2): 71-79. Doi: 10.1016/j.jpha.2015.11.005.

Bansemir A, Blume M, Schroder S, Lindequist U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture. 252 (1): 79-84. doi.org/10.1016/j.aquaculture.2005.11.051.

Barreto MC, Mendonça E, Gouveia V, Anjos C, Medeiros JS, Seca AML, Neto AI. (2012). Macroalgae from S. Miguel Island as a potential source of antiproliferative and antioxidant products. Life and Marine Sciences.  29: 53-58.

Barros FCN, da Silva DC, Sombra VG, Maciel JS, Feitosa JPA, Freitas ALP, de Paula RCM. (2013). Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J. Agardh). Carbohydrate Polymers. 92: 598-603. Doi.org/10.1016/j.carbpol.2012.09.009.

Berber İ, Avşar C,Koyuncu H. (2015). Antimicrobial and antioxidant activities of Cystoseira crinite Duby and Ulva intestinalis Linnaeus from the coastal region of Sinop Turkey. Journal of Coastal Life Medicine. 3(6): 441-445.Doi: 10.12980/JCLM.3.2015JCLM-2015-0013.

Bianco EM, Pires L, Santos GK, Dutra KA, Reis TN, Vasconcelos ER, Cocentino AL, Navarro DM. (2012). Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Industrial Crops and Products. 43: 270-275. Doi.org/10.1016/j.indcrop.2012.07.032.

Brooks GF, Carroll KC, Butel JS, Morse SA. (2007). Antimicrobial chemotherapy. In: Jawetz, Melnick, Adelberg’s Medical Microbiology. 24th ed. New York: McGraw Hill, pp. 161-196.

Cao G, Sofic E, Prior RL. (1997). Antioxidant and pro-oxidant behavior of flavonoids: structure-activity relationship. Free Radical Biology and Medicine. 22(5): 749-760. Doi: 10.1016/s0891-5849(96)00351-6.

Chandini SK, Ganesan P, Bhaskar N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry. 107 (2): 707–713. Doi.org/10.1016/j.foodchem.2007.08.081.

Chia YY, Kanthimathi MS, Rajarajeswaran J, Khoo KS, Cheng HM. (2015). Antioxidant, antiproliferative, genotoxic, and cytoprotective effects of the methanolic extract of Padina tetrastromatica on human breast adenocarcinoma and embryonic fibroblast cell lines. Frontiers in Life Science. 8: 411-418. Doi.org/10.1080/21553769.2015.1051245.

De-Campos TGM, Dium MBS, Koeningm ML, Periera EC. (1988). Screening of marine algae from the Brazilian northeastern coast for antimicrobial activity. Botanica Marina. 31: 375-377. Doi.org/10.1515/botm.1988.31.5.375.

de Felício R, de Albuquerque S, Young MCM, Yokoya NS, Debonsi HM. (2010). Trypanocidal, leishmanicidal, and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). Journal of Pharmaceutical and Biomedical Analysis. 52 (5): 763-769. Doi: 10.1016/j.jpba.2010.02.018.

Devi GK, Manivannan K, Thirumaran G, Rajathi FAA, Anantharaman P. (2011). In vitro antioxidant activities of selected seaweeds from the Southeast coast of India. Asian Pacific Journal of Tropical Medicine 4(3): 205-211. Doi.org/10.1016/S1995-7645(11)60070-9.

Devi KP, Suganthy N, Kesika PK, Pandian S. (2008). Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food-borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine. 8: 38. ِِِDoi: 10.1186/1472-6882-8-38.

Dulger G and Dulger B. (2014). Antibacterial activity of two brown algae Cystoseira compressa and Padina pavonica against methicillin-resistant Staphylococcus aureus. British Microbiology Research Journal. 4: 918-923. Doi: 10.9734/BMRJ/2014/10449.

Elalla MFA and Shalaby EA. (2009). Antioxidant Activity of Extract and Semi-Purified Fractions of Marine Red Macroalga, Gracilaria verrucosa. Australian Journal of Basic and Applied Sciences. 3 (4): 3179-3185.

El-Fatimy ES and Abdel-Moneim SA. (2011). Antibacterial activity of methanolic extract of dominant marine alga (Padina pavonia) of Tolmeta Coasts, Libya. Journal of American Science. 7 (4): 745-751.

Ertürk Ö and Taş B. (2011). Antibacterial and antifungal effects of some marine algae. Kafkas Üniversitesi Veteriner Fakültesi Dergisi (in Russian). 17 (Suppl A): S121-S124.

Fouladvand M, Barazesh A, Farokhzad F, Malekizadeh H, Sartavi K. (2011). Evaluation of in vitro anti-Leishmanial activity of some brown, green, and red algae from the Persian Gulf. European Review for Medical and Pharmacological Sciences. 15 (6): 597-600.

Ganesan P, Kumar C, Bhaskar N. (2008). Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresource Technology. 99(8): 2717-2723. doi.org/10.1016/j.biortech.2007.07.005.

Ganesan K, Kumar KS, Roa PVS. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, northwest coast of India. Innovative Food Science and Emerging Technologies. 12 (1): 73-78. Doi.org/10.1016/j.ifset.2010.11.005.

Govindasamy C, Narayani S, Arulpriya M, Ruban P, Anantharaj K, Srinivasan R. (2011). In vitro antimicrobial activities of seaweed extracts against human pathogens. Journal of Pharmacy Research. 4 (7): 2076-2077.

Grassmann J, Hippeli S, Elstner EF. (2004). Plant`s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiology and Biochemistry. 40: 471-478.

Guaratini T, Lopes NP, Marinho-Soriano E, Colepicolo P, Pinto E. (2012). Antioxidant activity and chemical composition of the non-polar fraction of Gracilaria. Brazilian Journal of Pharmacognosy. 22: 724-729.

Guerra Dore CMP, Faustino Alves MG, das C, Pofírio Will LSE, Costa TG, Sabry DA, de Souza Rêgo LAR de, Accardo CM, Rocha HAO, Filgueira LGA, Leite EL. (2013). A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant, and anti-inflammatory effects. Carbohydrate Polymers. 91: 467-475.

Guner A, Koksal C, BaykanErel S, Kayalar H, Nalbantsoy A, Sukatar A, UlkuKarabayYavasoglu N. (2015). Antimicrobial and antioxidant activities with acute toxicity, cytotoxicity and mutagenicity of Cystoseira compressa (Esper) Gerloff & Nizamuddin from the coast of Urla (Izmir, Turkey). Cytotechnology. 67: 135-43. Doi:  10.1007/s10616-013-9668-x.

Holdt SL and Kraan S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology. 23: 543-597.

Husni A, Wijayanti R, Ustadi. (2014). Inhibitory activity of α-amylase and α-glucosidase by Padina pavonica extracts. Journal of Biological Sciences. 14 (14): 515-520. Doi: 10.3923/jbs.2014.515.520.

Ibtissam C, Hassane Jose M, Francisco DSJ, Antonio GVJ, Hassan B, Mohamed K. (2009). Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. African Journal of Biotechnology. 8: 1258-1562.

Jeyanthi RL, Dhanalakshmi V, Sharmila S, Paul Das M. (2013). In vitro antimicrobial activity of Gracilaria sp. and Enteromorpha sp. Research Journal of Pharmaceutical. Biological and Chemical Sciences. 4: 693-697.

Jiménez Escrig A, GoñiCambrodón I. (1999). Evaluación nutricional y efectosfisiológicos de macroalgas marinas comestibles. Archivos Latinoamericanos de Nutrición. 49: 114-120.

Jin L, Zhang Y, Yan L, Guo Y, Niu L. (2012). Phenolic compounds and antioxidant activity of bulb extracts of six Lilium species native to China. Molecules. 17: 9361-9378.

Kannan M, Dheeba B, Nageshwari K, Kannan K. Venkatesan S. (2014a). Antibacterial and antiobesity activities of marine algae Gracilaria corticata and Spirulina platensis. International Journal of Pharmacy and Pharmaceutical Sciences. 6 (6): 420-424.

Kannan M, Pushparaj A, Dheeba B, Nageshwari K, Kannan K. (2014b). Phytochemical screening and antioxidant activity of marine algae Gracilaria corticata and Spirulina platensis. Journal of Chemical and Pharmaceutical Research. 6 (11): 312-318.

Karthikeyan R, Anantharaman P, Chidambaram N, Balasubramanian T, Somasundaram ST. (2012). Padina boergesenii ameliorates carbon tetrachloride-induced nephrotoxicity in Wistar rats. Journal of King Saud University Science. 24 (3): 227-232. Doi.org/10.1016/j.jksus.2011.03.002.

Karthikeyan R, Manivasagam T, Anantharaman P, Balasubramanian T, Somasundaram ST. (2011). Chemopreventive effect of Padina boergesenii extracts on ferric nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats. Journal of Applied Phycology. 23 (2): 257-263.

Kim SK nad Karadeniz F. (2011). Anti-HIV Activity of extracts and compounds from marine algae. Advances in Food and Nutrition Research. 64: 255-265. Doi.org/10.1016/B978-0-12-387669-0.00020-X.

Kim SK, Thomas NV, Li X. (2011). Anticancer compounds from marine macroalgae and their application as medicinal foods. Advances in Food and Nutrition Research. 64: 213-224. Doi.org/10.1016/B978-0-12-387669-0.00016-8.

Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella MT, Olaizola C,  Ontiveros Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases. 8 (1): 39-45. doi.org/10.1016/j.ijid.2003.03.002.

Moein S, Moein M, Ebrahimi N, Farmani F, Sohrabipour J, Rabiei R. (2015). Extraction and determination of protein content and antioxidant properties of ten algae from the Persian Gulf. International Journal of Aquatic Science. 6(2): 29-38.

Murugan K and Iyer VV. (2012). Antioxidant and antiproliferative activities of marine algae., Gracilaria edulis and Enteromorpha lingulata, from Chennai coast. International Journal of Cancer Research. 8: 15-26. Doi: 10.3923/ijcr.2012.15.26.

Na HJ, Moon PD, Lee HJ, Kim HR, Chae HJ, Shin T, Seo Y, Hong SH, Kim HM. (‎2005). Regulatory effect of atopic allergic reaction by Carpopeltis affinis. Journal of Ethnopharmacology. 101:43-48. Doi: 10.1016/j.jep.2005.03.026.

Prabhahar C, Saleshrani K, Saranraj P, Tharmaraj K. (2012). Studies on the antifungal activity of Turnera subulata and Acacia nilotica against pathogenic fungal pathogens. International Journal of Recent Scientific Research. 3 (3): 149-154.

Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T. (2006). Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Science Asia. 32: 7-11. Doi: 10.2306/scienceasia1513-1874.2006.32(s1).011.

Ravikumar S, Ramanathan G, Gnanadesigan M, Ramu A, Vijayakumar V. (2011). In vitro antiplasmodial activity of methanolic extracts from seaweeds of South West Coast of India. Asian Pacific Journal of Tropical Medicine. 4 (11): 862-865. Doi: 10.1016/S1995-7645(11)60209-5.

Rhimou B, Hassane R, Nathalie B (2010). Antiviral activity of the extracts of Rhodophyceae from Morocco. African Journal of Biotechnology. 9: 7968-7975. Doi:10.5897/AJB09.2023

Rizvi MA. (2010). Comparative antibacterial activities of seaweed extracts from Karachi coast, Pakistan. Pakistan Journal of Pharmacology. 27 (2): 53-57.

Sadati N, Khanavi M, Mahrokh A, Nabavi SMB, Sohrabipour J, Hadjiakhoondi A. (2011). Comparison of antioxidant activity and total Phenolic contents of some Persian Gulf marine algae. Journal of Medicinal Plants. 10 (37): 73-79.

Sasidharan S, Darahand I, Jain K. (2011). In vitro and in situ anti-yeast activity of Gracilaria changii methanol extracts against Candida albicans. European Review for Medical and Pharmacological Sciences. 15 (9): 1020-1026.

Sastry VMVS and Rao GRK. (1994). Antibacterial substances from marine algae: Successive extraction using benzene, chloroform, and methanol. Botanica Marina. 37: 357-360. doi.org/10.1515/botm.1994.37.4.357.

Shi D, Li X, Li J, Guo S, Su H, Fan X. (2010). Antithrombotic effect of bromophenol, the alga-derived thrombin inhibitor. Chinese Journal of Oceanology and Limnology. 28: 96-98.

Shu MH, Appleton D, Zandi K, Abubakar S. (2013). Anti-inflammatory, gastroprotective, and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract. BMC Complementary and Alternative Medicine. 13:61-69.

Škerget M, Kotnik P, Hadolin M, RiznerHraš A, Simonič M, Knez Ž. (2005). Phenols, proanthocyanidins, flavones, and flavones in some plant materials and their antioxidant activities. Food Chemistry. 89(2): 191–198. doi.org/10.1016/j.foodchem.2004.02.025.

Souza BW, Cerqueira MA, Martins JT, Quintas MA, Ferreira AC, Teixeira JA, Vicente AA. (2011). Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts. Journal of Agricultural and Food Chemistry. 59 (10): 5589-5594. Doi.org/10.1021/jf200999n.

Tajbakhsh S, Ilkhani M, Rustaiyan A, Larijani K, SartaviK, Tahmasebi R, Asayesh G. (2011a). Antibacterial effect of the brown alga Cystoseira trinodis. Journal of Medicinal Plants Research. 5(18): 4654-4657. Doi.org/10.5897/JMPR.9000128.

Tajbakhsh S, Pouyan M, Zandi K., Bahramian P, Sartavi K, Fouladvand M, Asayesh G, Barazesh A. (2011b). In vitro study of antibacterial activity of the alga Sargassum oligocystum from the Persian Gulf. European Review for Medical and Pharmacological Sciences. 15 (3): 293-298.

 Thuy TTT, Ly BM, Van TTT, Van Quang N, Tu HC, Zheng Y, Seguin-Devaux C, Mi B., AiU. (2015). Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydrate Polymers. 15 (3): 122-128.

Torres P, Pires Santos J, Chow F, dos Santos DYAC. (2019). A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta) Algal Research, Algal Research 37: 288-306. Doi.org/10.1016/j.algal.2018.12.009.

Tüney İ, Cadirci BH, Dilek Ü, Sukatar A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology. 30: 171-175.

Vallinayagam K, Arumugam R, Ragupathi Raja Kannan R, Thirumaran G, Anantharaman P. (2009). Antibacterial activity of some selected seaweeds from Pudumadam coastal regions. Global Journal of Pharmacology. 3 (1): 50-52.

Vijayavel K and Martinez JA. (2010). In vitro antioxidant and antimicrobial activities of two Hawaiian marine limu: Ulva fasciata (Chlorophyta) and Gracilaria salicornia (Rhodophyta). Journal of Medicinal Food. 13 (6): 1494-1499. Doi: 10.1089/jmf.2009.0287.

Widowati I, Lubac D, Pusoita M, Bourgougnon N. (2014). Antibacterial and antioxidant properties of the red alga Gracilaria verrucosa from the north coast of Java, Semarang, Indonesia. International Journal of Latest Research in Science and Technology. 3 (3): 3179-185.

Wijesinghe WAJP, Jeon YJ. (2012). Biological activities and potential industrial applications of fucose rich sulphated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydrate Polymers.88:13-20. Doi.org/10.1016/j.carbpol.2011.12.029.

Yuan YV, Carrington MF, Walsh NA. (2005). Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food and Chemical Toxicology. 43: 1073-1081. Doi.org/10.1016/j.fct.2005.02.012.

Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau, V, Fauchon M, Deslandes E (2009). Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry. 116 (3): 693-701. Doi.org/10.1016/j.foodchem.2009.03.025.

Abbasi B, Shokravi Sh, Golsefidi MA, Sateiee A, Kiaei E. (2019). Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems, and functional groups of the native cyanobacterium Calothrix sp. ISC 65. International Journal on Algae. Doi.org/10.15407/alg29.01.040.
Abbasi B, Shokravi S, Golsefidi A, Sateei A, Kiyaei E. (2020). Effects of short-time alkaline pretreatment on growth and photosynthesis efficiency of endemic cyanobacterium Fischerella sp. FS 18. Iranian Journal of Fisheries Sciences. Doi: 10.22092/ijfs.2020.122661.
Amirlatifi F, Soltani N, Saadatmand S, Shokravi S, Dezfulian M. (2013). Crude oil-induced morphological and physiological responses in cyanobacterium Microchaete tenera ISC13. International Journal of Environmental Research, 7 (4): 1007-1014. Doi.org/10.22059/ijer.2013.684.
Amirlatifi HS, Shokravi S, Sateei A, Golsefidi MA, Mahmoudjanlo M. (2018). Sample of cyanobacterim Calothrix sp. ISC 65 collected from oil-polluted regions respond to combined effects of salinity, extremely low-carbon dioxide concentration, and irradiance. International Journal on Algae. 20 (2): 193-210. Doi: 10.1615/InterJAlgae.v20.i2.80
Anagnostidis K and Komarek J. (1990). A modern approach to the classification system of cyanophytes 4-Nostocales. Archiv für Hydrobiologie. Supplement b and monographische Beiträge. 82 (3): 247-345.
Desikachary TV. (1959). Cyanophyta, Indian Council of agricultural research, New Delhi.
Downing JA. (2014). Limnology and oceanography: two estranged twins reuniting by global change. Inland Waters. 4: 215-232. Doi: 10.5268/IW-4.2.753.
Ghobadian S, Ganjidoost H, Ayati B, Soltani N. (2015). Evaluation of the effects of aeration cycle and culture medium concentration on biomass qualitative and quantitative indices in microalga Spirulina as a candidate for wastewater treatment. Journal of Aquatic Ecology. 5 (2): 87-99. http://jae.hormozgan.ac.ir/article-1-303-en.html.
Harati P, Shokravi Sh, Sateei A, Aziz P. (2009). Investigating the effect of continuous light and short dark periods on the survival, growth, and status of Scenedesmus sp. From Golestan province. Quarterly Journal of Plant Science. 4 (3), 20-34.
Iranshahi S, Nejadsattari T, Soltani N, Shokravi S, Dezfulian M. (2013). The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Sciences. 13 (4): 907-917.
John DM, Whitton BW, Brook AJ. (2003). The Freshwater algal flora of the British Isles. Cambridge University Press. https://www.researchgate.net/publication/306176982.
Karseno K, Harada K, Hirata K. (2003). Effect of medium and light quality on pink pigment production of cyanobacteria Oscillatoria sp. BTCC/A0004. E3S Web of Conferences 47, 03002. Doi.org/10.1051/e3sconf/20184703002.
Kaushik BD. (1987). Laboratory methods for blue-green algae. Associated Publishing Company.
Lambers H, Chapin III FS, Pons TL. (2008). Plant physiological ecology. Second edition. Springer. 623 p.
Léganes F, Sánchez-Maeso E, Fernández-Valiente E. (1987). Effect of indole acetic acid on growth and dinitrogen fixation in cyanobacteria. Plant and Cell Physiology. 28 (3): 529-33. Doi.org/10.1093/oxfordjournals.pcp.a077324.
Paeizi M and Shariati M. (2012). Effect of cold stress on PSII efficiency of Dunaliella using chlorophyll fluorescence kinetics. Journal of Cell and Tissue Research. 2 (4): 395-405. Doi.org/10.29252/JCT.2.4.395.
Poza-Carrión C, Fernández-Valiente E, Piñas FF, Leganés F. (2001). Acclimation to photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. Journal of Plant Physiology. 158: 1455-1461.
Prescott GW. (1962) Algae of the western great lake area W.M.C. Brown Company Publication. Doi.org/10.1078/0176-1617-00555.
Rodríguez MC, Sánchez M, Cassano V, Aylagas E, Sentíes A. (2012). Redefining the taxonomic status of Laurencia dendroidea (Ceramiales, Rhodophyta) from Brazil and the Canary Islands. European Journal of Phycology. 47: 67-81. Doi.org/10.1080/09670262.2011.647334.
Rosen BH and Mareš J. (2016). Catalog of microscopic organisms of the Everglades, Part 1-The cyanobacteria: U.S. Geological Survey Open-File Report 2016–1114. 108 p. Doi.org/10.3133/ofr20161114.  
Safaie Katoli M, Nejad-Sattari T, Majd A, Shokravi Sh. (2015). Physiological, morphological, and ultrastructural responses of cyanobacterium Fischerella sp. FS 18 to combination effects of extreme conditions. Journal of Apply Environment Biology Science. 5 (1): 135-149.
Shokravi Sh, Soltani N, Fernandez-Valiente E. (2007). Morphological variation of paddy field cyanobacterium Fischerella sp. from Iran under the combined influence of pH and irradiance. Journal of Plant Science Researches. 1 (8): 1-6.
Shokravi Sh, Safaie M, Jorjani S. (2010). Studying of acclimation of the cyanobacterium  Haplosiphon sp. FS 44 to the combination Effects of pH and carbon dioxide concentration Quarterly Journal of Plant Science Researches. 5 (3): 31-42.
Shokravi Sh and Soltani N. (2011). Acclimation of the Hapalosiphon sp. (Cyanoprokaryota) to combination effects of dissolved inorganic carbon and pH at extremely limited irradiance. International Journal on Algae. 13 (4). Doi:10.1615/InterJAlgae.v13.i4.60.
Shokravi Sh and Soltani N. (2012). The effect of ammonium on viability, growth, and pigment composition of Fischerella sp. International Journal on Algae. 14 (1): 63-71. Doi: 10.1615/InterJAlgae.v14.i1.50.
Shokravi Sh, Amirlatifi HS, Pakzad A, Abbasi B, Soltani N. (2014). Physiological and morphological responses of unexplored cyanoprokaryota Anabaena sp. FS 77 was collected from oil-polluted soils under a combination of extreme conditions. International Journal on Algae. 16 (2): 164-180. Doi:10.1615/InterJAlgae.v16.i2.70
Soltani N, Khavarinejad RA, Shokravi Sh. (2006). The effect of ammonium on growth and metabolism of soil cyanobacteria Fischerella sp. FS18. Quarterly Journal on Plant Science Researches. 1 (1): 48-53.
Soltani N, Khavarinejad RA, Tabatabaei Yazdi M, Shokravi Sh. (2007). Growth and metabolic feature of cyanobacteria Fischerella sp. FS18 in different combined nitrogen sources. Iranian Journal of Science. 18 (2): 123-128.
Soltani N, Baftechi L, Ehsan S. (2009). Isolation and record of new species of cyanobacteria belonging to Oscillatoriaceae from Tehran province with the use of different culture media. Journal of Plant Environmental Physiology. 4 (2): 1-7.
Soltani N, Siahbalaie R. Shokravi Sh. (2011). Taxonomical characterization of Fischerella sp. FS18, a multidisciplinary approach. International Journal on Algae. 19-36. Doi: 10.1615/InterJAlgae.v12.i1.20.
Tang EPY and Vincent WF. (1999). Strategies of thermal adaptation by high latitude cyanobacteria. New Phytologists. 142: 315-323.
Vakili F, Ghorchibeigi K, Soltani N, Shokravi Sh. (2007). The effect of continuous illumination and photoperiods on growth and heterocyst frequency of cyanobacterium Fischerella ambigua from Golestan province. Quarterly Journal of Plant Science Researches. 1 (2): 11-20.
Witton BA and Potts M. (2000). Introduction to the cyanobacteria, in the ecology of cyanobacteria: their diversity in time and space (Eds B). Springer Science and Business Media. Doi:10.1007/0-306-46855-7.
Yen U, Huang T, Yen T. (2004). Observation of the circadian photosynthetic rhythm in cyanobacteria with a dissolved-oxygen meter, author links open overlay panel. Plant Science. 166 (4): 949-952.