Ahad RIA, Syiem MB. (2018). Copper and cadmium-induced toxicity on the cyanobacterium Nostoc muscorum Meg 1: a comparative study. EurAsian Journal of BioSciences. 12: 333-45.
Akbarnezhad M, Shamsaie Mehrgan M, Kamali A, Javaheri baboli M. (2020). Effects of microelements (Fe, Cu, Zn) on growth and pigment contents of Arthrospira (Spirulina) platensis. Iranian Journal of Fisheries Sciences. 19: 2020.
Almutairi AW, El-Sayed AEKB, Reda MM. (2020). Combined effect of salinity and pH on lipid content and fatty acid composition of Tisochrysis lutea. Saudi Journal of Biological Sciences. 27: 3553-8.
Anahas AMP and Muralitharan G. (2018). Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Conversion and Management. 157: 423-37.
Antoni JS, Daglio Y, Areco MM, Rodríguez MC. (2021). Zinc-induced stress on cells of Halamphora luciae (Bacillariophyceae). European Journal of Phycology. 56:37-50.
Asadian M, Fakheri BA, Mahdinezhad N, Gharanjik S, Beardal J, Talebi AF. (2018). Algal Communities: An Answer to Global Climate Change. CLEAN–Soil, Air, Water.
Baryla A, Laborde C, Montillet JL, Triantaphylidès C, Chagvardieff P. (2000). Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environmental Pollution. 109:131-135. doi: 10.1016/S0269-7491(99)00232-8.
Battah M, El-Ayoty Y, Abomohra AEF, El-Ghany SA, Esmael A. (2015). Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production. Annals of Microbiology. 65:155-162. doi: 10.1007/s13213-014-0846-7.
Bligh EG and Dyer WJ. (1959). A rapid method of total lipid extraction and purification1. Canadian Journal of Biochemistry and Physiology. 37. doi: https://doi.org/10.1139/o59-099.
Blondeau N, Lipsky RH, Bourourou M, Duncan MW, Gorelick PB, Marini AM. (2015). Alpha-linolenic acid: An omega-3 fatty acid with neuroprotective properties - Ready for use in the stroke clinic? BioMed Research International. 519830:1-8. doi: 10.1155/2015/519830
Cellamare M, Duval C, Drelin Y, Djediat C, Touibi N, Agogué H, Leboulanger C, Ader , Bernard C. (2018). Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). FEMS Microbiology Ecology.94:1–25. doi: 10.1093/femsec/fiy108.
Chandra K, Salman A, Mohd A, Sweety R, Ali KN .(2015). Protection Against FCA Induced Oxidative Stress Induced DNA Damage as a Model of Arthritis and In vitro Anti-arthritic Potential of Costus speciosus Rhizome Extract. International Journal of Pharmaceutical and Phytopharmacological Research. 7 (2):383-389.
Che R, Huang L, Xu JW, Zhao P, Li T, Ma H, Yu X. (2017). Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10. Bioresource Technology. 227:324-334. doi: 10.1016/j.biortech.2016.12.017.
Chen HH, Xue LL, Liang MH, Jiang JG. (2019). Sodium azide intervention, salinity stress and two-step cultivation of Dunaliella tertiolecta for lipid accumulation. Enzyme and Microbial Technology. 127:1–5. doi: 10.1016/j.enzmictec.2019.04.008.
De La Haba C, Palacio JR, Martínez P, Morros A. (2013). Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. Biochimica et Biophysica Acta-Biomembranes. 1828:357–364. doi: 10.1016/j.bbamem.2012.08.013.
Dong X, Huang L, Li T, Xu JW, Zhao P, Yu X. (2020). The enhanced biomass and lipid accumulation in algae with an integrated treatment strategy by waste molasses and Mg2+ addition. Energy Sources, Part A Recovery, Utilization, and Environmental Effects. 42:1183–1192. doi: 10.1080/15567036.2019.1602227.
Ghorbani E, Nowruzi B, Nezhadali M, Hekmat A. (2022). Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition. BMC Microbiology. 22(58):1-15. https://doi.org/10.1186/s12866-022-02471-8.
Goswami S, Diengdoh OL, Syiem MB, Pakshirajan K, Kiran MG. (2015). Zn(II) and cu(II) removal by Nostoc muscorum: A cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India. Canadian Journal of Microbiology. 61:209–215. doi: 10.1139/cjm-2014-0599.
Gour RS, Garlapati VK, Kant A. (2020). Effect of Salinity Stress on Lipid Accumulation in Scenedesmus sp. and Chlorella sp.: Feasibility of Stepwise Culturing. Current Microbiology. 77:779–785. doi: 10.1007/s00284-019-01860-z.
Griffiths MJ and Harrison STL. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology. 21:493–507. doi: 10.1007/s10811-008-9392-7.
Heidari F, Riahi H, Aghamiri MR, Zakeri F, Shariatmadari Z, Hauer T. (2018). 226Ra, 238U and Cd adsorption kinetics and binding capacity of two cyanobacterial strains isolated from highly radioactive springs and optimal conditions for maximal removal effects in contaminated water. International Journal of Phytoremediation. 20: 369-377. doi: 10.1080/15226514.2017.1393392.
Huang L, Xu J, Li T, Wang L, Deng T, Yu X. (2014). Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Annals of Microbiology. 64:1247–1256. doi: 10.1007/s13213-013-0768-9.
Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ. (2014). Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865–886.
Kabirnataj S, Nematzadeh GA, Talebi AF, Saraf A, Suradkar A, Tabatabaei M, Singh P. (2020). Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology. 70:3413–3426. doi: 10.1099/ijsem.0.004188.
Kabirnataj S, Nematzadeh GA, Talebi AF, Tabatabaei M, Singh P. (2018). Neowestiellopsis gen. nov, a new genus of true branched cyanobacteria with the description of Neowestiellopsis persica sp. nov. and Neowestiellopsis bilateralis sp. nov., isolated from Iran. Plant Systematics and Evolution. 304:501-510. doi: 10.1007/s00606-017-1488-6.
Kabirnataj S, Nematzadeh GA, Talebi AF, Tabatabaei M, Singh P. (2019). Identification of some heterocystous cyanobacteria isolated from rice fields of Mazandaran province with emphasis on multi-genic approach. Journal of Microbial World. 12:213-228.
Komárek J. (2013). Modern classification of cyanobacteria. In: Sharma NK, Rai AK, Stal LJ (ed) Cyanobacteria. John Wiley and Sons, Ltd, Chichester, UK. pp: 21-39.
Kong F, Ren HY, Zhao L, Nan J, Ren NQ, Liu BF, Ma J. (2020). Semi-continuous lipid production and sedimentation of Scenedesmus sp. by metal ions addition in the anaerobic fermentation effluent. Energy Conversion and Management. 203:112216. doi: 10.1016/j.enconman.2019.112216.
Kumar R, Biswas K, Kumar Singh P, Kumar Singh P, Elumalai S, Shukla P, Pabbi S. (2017). Lipid production and molecular dynamics simulation for regulation of accD gene in cyanobacteria under different N and P regimes. Biotechnol. Biofuels. 10: 94. doi: https://doi.org/10.1186/s13068-017-0776-2.
Kumar SK, Dahms HU, Won EJ, Lee JS, Shin KH. (2015). Microalgae - A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety. 113:329-52. doi: 10.1016/j.ecoenv.2014.12.019. Epub 2014 Dec 19. PMID: 25528489.
Li H, Watson J, ZhangY, Lu H, Liu Z. (2020). Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: A critical review. Bioresource Technology. 298:122421. https://doi.org/10.1016/j.biortech.2019.122421.
Li J, Parkefelt L, Persson KM, Pekar H. (2017). Improving Cyanobacteria and Cyanotoxin Monitoring in Surface Waters for Drinking Water Supply. Journal of Water Security. 3:1-8. doi: 10.15544/jws.2017.005.
Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology. 102:5138–5144. doi: 10.1016/j.biortech.2011.01.091
Livak KJ and Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. Doi: 10.1006/meth.2001.1262.
Ma Y, Wang Z, Yu C, Yin Y, Zhou G. (2014). Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresource Technology. 167:503–509. doi: 10.1016/j.biortech.2014.06.047
Martínez-Macias M del R, Correa-Murrieta MA, Villegas-Peralta Y, Dévora-Isiordia GE, Álvarez-Sánchez J, Saldivar-Cabrales J, Sánchez-Duarte RG. (2019). Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata. Environmental Science and Pollution Research. 26:6311-6318. doi: 10.1007/s11356-018-3963-1
Monteiro CM, Castro PML, Malcata FX. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress. 28: 299–311.
Morsy AA, Salama KHA, Kamel HA, Mansour MMF. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian Journal of Biosciences. 6:1–10. doi: 10.5053/ejobios.2012.6.0.1
Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV de Carvalho, Nascimento GC, Maurício A. (2013). Screening Microalgae Strains for Biodiesel Production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Research. 6:1-13. Doi: 10.1007/s12155-012-9222-2.
Oliveira DT de, Turbay Vasconcelos C, Feitosa AMT, Aboim JB, Oliveira AN, Xavier LP, Santos AS, Gonçalves E, Nascimento L. (2018). Lipid profile analysis of three new Amazonian cyanobacteria as potential sources of biodiesel. Fuel. 234:785–788. Doi: 10.1016/j.fuel.2018.07.080.
Pham TL, Dao TS, Bui HN, Pham TKN, Ngo TTH, Bui HM. (2020). Lipid production combined with removal and bioaccumulation of Pb by Scenedesmus sp. Green Alga. Polish Journal of Environmental Studies. 29:1785–1791. doi: 10.15244/pjoes/109277.
Post-Beittenmiller D, Roughan G, Ohlrogge JB. (1992). Regulation of plant fatty acid biosynthesis: Analysis of acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiology. 100:923–930. Doi: 10.1104/pp.100.2.923.
Rocha DN, Martins MA, Soares J, Vaz MGMV, de Oliveira Leite M, Covell L, Mendes LBB. (2019). The combination of trace elements and salt stress in different cultivation modes improves the lipid productivity of Scenedesmus spp. Bioresource Technology. 289: 121644. doi: 10.1016/j.biortech.2019.121644.
Sharma KK, Schuhmann H, Schenk PM. (2012). High lipid induction in microalgae for biodiesel production. Energies. 5:1532–1553. doi: 10.3390/en5051532.
Sibi G, Anuraag TS, Bafila G. (2014). Copper stress on cellular contents and fatty acid profiles in Chlorella species. OnLine Journal of Biological Sciences. 14:209–217. doi: 10.3844/ojbsci.2014.209.217.
Sierra-Cantor JF and Guerrero-Fajardo CA. (2017). Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review. Renewable and Sustainable Energy Reviews. 72:774-790.
Sinetova MA, Červený J, Zavřel T, Nedbal L. (2012). On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. Journal of Biotechnology. 162:148-155. doi: 10.1016/j.jbiotec.2012.04.009.
Singh JS, Kumar A, Singh M. (2019). Cyanobacteria: A sustainable and commercial bio-resource in production of bio-fertilizer and bio-fuel from waste waters. Environmental and Sustainability Indicators. 3–4:1-8.https://doi.org/10.1016/j.indic.2019.100008.
Sorate KA and Bhale P V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews. 41:777-798. doi: 10.1016/j.rser.2014.08.079.
Stanier RY, Deruelles J, Rippka R, Herdman M, Waterbury J. (1979). Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. Semantic Scholar. Microbiology. 111:1-61. doi:10.1099/00221287-111-1-1.
Sui N, Li M, Li K, Song J, Wang BS. (2010). An increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances the protection of photosystem II under high salinity. Photosynthetica. 48:623–629. doi: 10.1007/s11099-010-0080-x
Sun J, Cheng J, Yang Z, Li K, Zhou J, Cen K. (2015). Microstructures and functional groups of Nannochloropsis sp. cell with arsenic adsorption and lipid accumulation. Bioresource Technology. 194:305–311. doi: 10.1016/j.biortech.2015.07.041
Sunda WG, Price NM, Morel FMM. (2005). Trace Metal Ion Buffers and Their Use in Culture Studies. In: Andersen R A (ed) Algal Culturing Techniques. Elsevier Academic Press. San Diego, CA, USA. pp: 35-63.
Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum. 35:985-999
Szekeres E, Sicora C, Dragoş N, Drugă B. (2014). Selection of proper reference genes for the cyanobacterium Synechococcus PCC 7002 using real-time quantitative PCR. FEMS Microbiology Letters. 359:102–109. Doi: 10.1111/1574-6968.12574.
Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Hadavand Mirzaei H, Mirzajanzadeh M, Malekzadeh Shafaroudi S, Bakhtiari S. (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research. 2:258-267. doi: 10.1016/j.algal.2013.04.003.
Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M. (2014). Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Research Journal. 1:91-97. Doi: 10.18331/BRJ2015.1.3.6.
Tiwari ON, Bhunia B, Muthuraj M, Kanti Bandyopadhyay T, Ghosh D, Gopikrishna K. (2020). Optimization of process parameters on lipid biosynthesis for sustainable biodiesel production and evaluation of its fuel characteristics. Fuel. 269:117471. Doi: 10.1016/j.fuel.2020.117471.
UNESCO. (2019). UN World Water Development Report. UN-Water. Doi: https://unesdoc.unesco.org/ark:/48223/pf0000367306.
Upchurch RG. (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters. 30:967-977.
Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One. 9:1–13. Doi: 10.1371/journal.pone.0091957.