Biosynthesis of Gold Nanoparticles by Medicinal Cyanobacterium Spirulina platensis Geitler

Document Type : Original Article

Authors

1 Department of arid land and desert management, Faculty of natural recourses, Yazd University, Yazd, Iran

2 Department of Chemistry, Faculty of Sciences, Yazd University, Yazd, Iran

3 Department of Biology, Faculty of Sciences, Yazd University, Yazd, Iran

4 Department of New Medical Technologies, Faculty of Paramedicine, ShahidSadoughi University, Yazd, Iran

Abstract

Abstract
The biosynthesis of nanoparticles using microorganisms as emerging bionanotechnology has received considerable attention due to a growing need to develop environment-friendly technologies in materials synthesis. Nanoparticles produced by a biogenic enzymatic process are far superior in biomedical applications to those produced by chemical methods. This study explored the biosynthesis of gold nanoparticles by Arthrospira platensis Gomont. Two series of experiments hence the dose dependency (chloroauric acid solution with different concentrations) and the temperature dependency (room, 75º C, and 90º C temperature) of Au nanoparticles formation, were studied. Optimizing the synthesis of gold nanoparticles and gold nanoparticle concentration determination was done. The results showed that the gold nanoparticles' size is reduced by reducing the gold concentration and raising the reaction temperature. In addition, the size of spherical shape nanoparticles has decreased from 80 nm to 20 nm, and as the concentration increased, nanoparticles became more stable. Extracted nanoparticle solutions were examined by UV-visible Spectroscopy, scanning electron microscopy (SEM), dynamic Light Scattering (DLS), and EDAX or EDS (Energy-dispersive X-ray spectroscopy) analysis. Results indicated that algae extract very suitable for biosynthesis and are more efficient than biomass. The maximum production efficiency with this method is 98%, which is excellent and economical.

Keywords


Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. Journal of Biomedical Nanotechnology. 1 (1): 47-53.Doi: 10.1002/smll.200400053.
Akintelu SA, Yao B, Folorunso AS. (2021). Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon. 7 (3):e06591. Doi: 10.1016/j.heliyon.2021.e06591.
Bakir EM, Younis NS, Mohamed ME, El Semary NA. (2018). Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Marine Drugs. 16 (6): 217. Doi: 10.3390/md16060217.
Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. (2009). Biorecovery of gold using cyanobacteria and a eukaryotic alga with special reference to nanogold formation–a novel phenomenon. Journal of Applied Phycology. 21 (1): 145-152. Doi: 10.1007/s10811-008-9343-3.
Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S. (2006). Diatom: a potential bio-accumulator of gold. Journal of Radioanalytical and Nuclear Chemistry. 270 (3): 645-649. Doi: 10.1007/s10967-006-0475-0.
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress. 22 (2): 577-583. Doi: 10.1021/bp0501423.
Chow MK and Zukoski CF. (1994). Gold sol formation mechanisms: role of colloidal stability. Journal of Colloid and Interface Science. 165 (1): 97-109. Doi: 10.1006/jcis.1994.1210.
Deendayal M, Bolander EM, Mukhopadhyay D, Sarkar G, Mukherjee P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and  Biotechnology. 69: 485-492. Doi: 10.1007/ s00253-005-0179-3.
Doshi H, Ray A, Kothari IL. (2007). Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnology and Bioengineering. 96 (6): 1051-1063. Doi: 10.1002/bit.21190.
Duff DG, Curtis AC, Edwards PP, Jefferson DA, Johnson BF, Kirkland AI, Logan DE. (1987). The morphology and microstructure of colloidal silver and gold. Angewandte Chemie International Edition in English. 26 (7): 676-678. Doi: 10.1002/anie.198706761.
Faramarzi MA, Fortunfar H, Shakibaei M. (2010). Biotechnology of microalgae. Tehran University of Medical Sciences.
Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ. (2002). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters. 2 (4): 397-401. Doi: 10.1021/nl015673+.
Gericke M and Pinches A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy. 83 (1-4): 132-140. Doi: 10.1016/j.hydromet.2006.03.019.
Govindaraju K, Basha SK, Kumar VG, Singaravelu G. (2008). Silver, gold, and bimetallic nanoparticles production using single-cell protein (Spirulina platensis Geitler). Journal of Materials Science. 43 (15): 5115-5122. Doi: 10.1007/s10853-008-2745-4.
Hu Y, Li C, Gu F, Zhao Y. (2007). Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2 nanoparticles. Journal of Alloys and Compounds. 432 (1-2): L5- L9. Doi: 10.1016/j.jallcom.2006.05.134.
Kalabegishvili T, Kirkesali E, Rcheulishvili A. (2012). Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. JINR-E--14-2012-31. Frank Laboratory of Neutron Physics.
Khosravi-Darani K, Sohrabvandi S, Zoghi A. (2017). Intra-cellular Biosynthesis of Gold Nanoparticles by Fungus Penicillium chrysogenum. Medicinal Journal of Tabriz Univesity of Medicinal Sciences Health Services. 39 (3): 32-38.
Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. (2020). Recent developments in the facile biosynthesis of gold nanoparticles (AuNPs) and their biomedical applications. International Journal of Nanomedicine. 15: 275. Doi: 10.2147/IJN.S233789.
Lengke MF, Sanpawanitchakit C, Southam G. (2011). Biosynthesis of gold nanoparticles: a review. Metal Nanoparticles in Microbiology. 37-74. Doi: 10.1007/978-3-642-18312-6-3.
Lengke MF, Fleet ME, Southam G. (2006a). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)− thiosulfate and gold (III)− chloride complexes. Langmuir. 22 (6): 2780-2787. Doi: 10.1021/la052652c.
Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G. (2006b). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)− chloride complex. Environmental Science and Technology. 40 (20): 6304-6309. Doi: 10.1021/es061040r.
Li X, Xu H, Chen ZS, Chen G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials. 2011 (8): 1-16. Doi: 10.1155/2011/270974.
Lujan JR, Darnall DW, Stark PC, Rayson GD, Gardea-Torresdey JL. (1994). Metal ion binding by algae and higher plant tissues: a phenomenological study of solution pH dependence. Solvent Extraction and Ion Exchange. 12 (4): 803-816. Doi: 10.1080/07366299408918239.
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology. 69 (5): 485-492. Doi: 10.1007/s00253-005-0179-3.
Nair B and Pradeep T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth and Design. 2 (4): 293-298. Doi: 10.1021/cg0255164.
Nayak D, Nag M, Banerjee S, Pal R, Laskar S, Lahiri S. (2006). Preconcentration of 198 Au in a green alga, Rhizoclonium. Journal of Radio Analytical and Nuclear Chemistry. 268 (2): 337-340. Doi: 10.1007/s10967-006-0170-1.
Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T. (2005). Sugar-assisted evolution of mono-and bimetallic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 264 (1-3): 133-138. Doi: 10.1016/j.colsurfa.2005.04.017.
Parial D, Patra HK, Dasgupta AK, Pal R. (2012). Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology. 47 (1): 22-29. Doi: 10.1080/09670262.2011.653406.
Rai M, Gade A, Yadav A. (2011). Biogenic nanoparticles: an introduction to what they are, how they are synthesized, and their applications. In Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg. 1-14. Doi: 10.1007/978-3-642-18312-6_1.
RastgarFarajzadeh M, Bardania H, Rahmati Shadabad K. (2010). Preparation of microbial nanoparticles. Nano Technology Monthly. 7 (156).
Saad AM, Mohamed AS, Ramadan MF. (2021). Storage and heat processing affect the flavors of cucumber juice enriched with plant extracts. International Journal of Vegetable Science. 27 (3): 277-287. Doi: 10.1080/19315260.2020.1779895.
Sadowski Z. (2010). Biosynthesis and application of silver and gold nanoparticles. Silver Nanoparticles. 22: 257-277.
Selvakannan PR, Mandal S, Phadtare S, Pasricha R, Sastry M. (2003). Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir. 19 (8): 3545-3549. Doi: 10.1021/la026906v.
Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G. (2016). A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology. 95: 28-44. Doi: 10.1016/j.enzmictec.2016.10.015.
Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. (2003). Biotechnology Progress. 19 (6): 1627-1631. Doi: 10.1021/bp034070w.
Sharma V, Park K, Srinivasarao M. (2009). A colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports. 65 (1-3): 1-38. Doi: 10.1016/j.mser.2009.02.002.
Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and surfaces B: Biointerfaces. 57 (1): 97-101. Doi: 10.1016/j.colsurfb.2007.01.010.
Sosa IO, Noguez C, Barrera RG. (2003). Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B. 107 (26): 6269-6275. Doi: 10.1021/jp0274076.
Stanier RY, Kunisawa R, Mandel MC, Cohen-Bazire G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews. 35 (2): 171-205. Doi: 10.1128/br.35.2.171-205.1971.
Tikariha S, Singh S, Banerjee S, Vidyarthi AS. (2012). Biosynthesis of gold nanoparticles, scope, and application: a review. International Journal of Pharmaceutical Sciences and Research. 3 (6):1603-1615. Doi: 10.13040/IJPSR.0975-8232.3(6).1603-15.
Ting YP, Teo WK, Soh CY. (1995). Gold uptake by Chlorella vulgaris. Journal of Applied Phycology. 7 (1): 97-100. Doi: 10.1007/BF00003557.
Xie J, Lee JY, Wang DI, Ting YP. (2007). Identification of active biomolecules in the high‐yield synthesis of single-crystalline gold nanoplates in algal solutions. Nano-Micro Small. 3 (4): 672-682. Doi: 10.1002/smll.200600612.
Wang S and Shi G. (2007). Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Materials Chemistry and Physics. 102 (2-3): 255-259. Doi: 10.1016/j.matchemphys.2006.12.014.