The Effect of Linoleic Acid and Nanoparticle Treatments as Inducers on Biomass and Fatty Acid Content in the Microalga, Haematococcus lacustris

Authors

1 Department of Agricultural Biotechnology and Plant Breeding, University of Zabol, Bonjar Street, Zabol, Iran

2 Department of Life Science Engineering, University of Tehran, Kargar Street, Tehran, Iran

Abstract

Abstract
Increased biomass density of microalgae is a critical factor in the enhancement of the algal metabolites. In this study, the effects of linoleic acid, TiO2, and SiO2 nanoparticles were investigated as elicitors on the production of biomass, and fatty acids in the microalga, Haematococcus lacustris. Several treatments of TiO2 and SiO2 nanoparticles were analyzed as well as linoleic acid on Haematococcus lacustris in two separate designs. Microalgal biomass in nanoparticles was investigated using the Neobar chamber and in linoleic acid using the freeze-dryer methods. Fatty acids compositions were tested by gas chromatography method and five of them named Palmitic, Palmitoleic, Stearic, Oleic, and Linoleic acids (LA) were measured. The results showed that the biomass significantly increased by LA (30 μM) and TiO2NPs (40 mg/L) treatments, and consequently, these treatments increased the biomass density by 2 and 1.3 times more than the control treatment, respectively. Palmitic and linoleic acids were the most frequent fatty acids produced by 60 and 30µM of LA treatments with 1.4 (53.26 % w/w) and 1.5 (32.51 % w/w) folds, respectively. To conclude, the different concentrations of LA and TiO2NP boosted the production of algal biomass, and some fatty acids in Haematococcus lacustris. Moreover, LA may be used as an effective inducer to increase biomass production in the valuable microalga Haematococcus lacustris.

Keywords


Adams LK., Lyon DY, Mcintosh A, Alvarez PJ. (2006). Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science and Technology. 54: 327-334. DOI: 10.2166/wst.2006.891.
Ahmed FLY, Fanning K, Netzel M, Schenk PM. (2015). Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Research International.74: 231-236. DOI: 10.1016/j.foodres.2015.05.021.
Barati B, Gan SY, Lim PE, Beardall J, Phang SM. (2019). Green algal molecular responses to temperature stress. Acta Physiologiae Plantarum. 41: 26. DOI: 10.1007/s11738-019-2813-1.
Boonnoun P, Kurita Y, Kamo Y, Machmudah S, Okita Y, Ohashi E, Kanda H, Goto M. (2014). Wet extraction of lipids and astaxanthin from Haematococcus pluvialis by liquefied dimethyl ether. Journal of Nutrition and Food Sciences. 4: 1000305. DOI: 10.4172/2155-9600.1000305.
Butler T, Mcdougall G, Campbell R, Stanley M. Day J. (2018). Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology. 7: 2. DOI: 10.3390/biology7010002.
Chekanov K, Litvinov D, Fedorenko T, Chivkunova O, Lobakova E. (2021). Combined production of astaxanthin and β-carotene in a new strain of the microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) cultivated in photobioreactor. Biology. 10: 643. DOI: 10.3390/biology10070643.
Chekanov K, Schastnaya E, Neverov K, Leu S, Boussiba S, Zarka A, Solovchenko A. (2019). Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochimicaet Biophysica Acta (BBA) - General Subjects. 1863: 1429-1442. DOI: 10.1016/j.bbagen.2019.05.002.
De Los Reyes C, Ávila-Román J, Ortega MJ, Jara A, García-Mauriño S, Motilva V, Zubía E. (2014). Oxylipins from the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana and their activity as TNF- inhibitors. Phytochemistry. 102: 152-161. DOI: 10.1016/j.phytochem.2014.03.011.
Doan LP, Nguyen TT, Pham M Q, Tran QT, Pham Q L, Tran DQ, Than VT, Bach LG. (2019). Extraction process, identification of fatty acids, tocopherols, sterols and phenolic constituents, and antioxidant evaluation of seed oils from five Fabaceae species. Processes. 7: 456. DOI: 10.3390/pr7070456.
Grosch W and Schwarz JM. (1971). Linoleic and linolenic acid as precursors of the cucumber flavor. Lipids. 6: 351-352. DOI: 10.1007/BF02531828.
Hempel N, Petrick I, Behrendt F. (2012). Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. Journal of Applied Phycology. 24: 1407-1418. DOI: 10.1007/s10811-012-9795-3.
Holtin K, Kuehnle M, Rehbein J, Schuler P, Nicholson G, Albert K. (2009). Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Analytical and bioanalytical chemistry. 395: 1613. DOI: 10.1007/s00216-009-2837-2.
Hong Y Z, (2016). Effect of different Concentrations of Cadmium Nanoparticle, PH and Salinity on Production of Astaxanthin in Haematococcus Pluvialis. INTI International University.
Howe GA and Schilmiller AL. (2002). Oxylipin metabolism in response to stress. Current Opinion in Plant Biology.5: 230-6. DOI: 10.1016/s1369-5266(02)00250-9 .
Hu C, Cui D, Sun X, Shi J, Xu N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research. 46: 101768. DOI: 10.1016/j.algal.2019.101768.
Kabir F, Gulfraz M, Raja GK, Inam-Ul-Haq M, Awais M, Mustafa M. S, Khan SU, Tlili I, Shadloo MS. (2020). Screening of native hyper-lipid-producing microalgae strains for biomass and lipid production. Renewable Energy, 160: 1295-1307. Doi: 10.1016/j.renene.2020.07.004
Kahila M, Najy AM, Rahaie M, Mir-Derikvand M. (2018). Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L. Natural Product Research. 32: 1858-1862. Doi: 10.1080/14786419.2017.1405398
Khalili Z, Jalili H, Noroozi M, Amrane A. (2019a). Effect of linoleic acid and methyl jasmonate on astaxanthin content of Scenedesmus acutus and Chlorella sorokiniana under heterotrophic cultivation and salt shock conditions. Journal of Applied Phycology. 1:12. Doi:10.1007/s10811-019-01782-0.
Khalili Z, Jalili H, Noroozi M, Amrane A. (2019b). Effect of linoleic acid and methyl jasmonate on astaxanthin content of Scenedesmus acutus and Chlorella sorokiniana under heterotrophic cultivation and salt shock conditions. Journal of Applied Phycology. 31: 2811-2822. Doi: 10.1007/s10811-019-01782-0.
Khalili Z, Jalili H, Noroozi M, Amrane A, Ashtiani FR. (2020). Linoleic-acid-enhanced astaxanthin content of Chlorella sorokiniana (Chlorophyta) under normal and light shock conditions. Phycologia. 59: 54-62. Doi: 10.1080/00318884.2019.1670012
Khozin-Goldberg I, Iskandarov U, Cohen Z. (2011). LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology. 91: 905-915. Doi: 10.1007/s00253-011-3441-x.
Kulacki K J and Cardinale BJ. (2012). Effects of nano-titanium dioxide on freshwater algal population dynamics. PLOS ONE. 7: 47130. Doi: 10.1371/journal.pone.0047130.
Manzo S, Buono S, Rametta G, Miglietta ML, Schiavo SD, Francia G. (2015). The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Doi: 10.1007/s11356-015-4790-2.
Nazeri V, Kiani R, Rezaei K, Kalvandi R. (2017). Diversity study of some ecological, morphological, and fatty acid profiles of Linum album Ky. ex Boiss. Iranian Journal of Medicinal and Aromatic Plants. 33: 168-183. Doi: 10.22092/ijmapr.2017.109721.
Pathak J, Maurya PK., Singh SP, Häder DP, Sinha RP. (2018). Cyanobacterial farming for environment-friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Sciences. 6: 7. Doi: 10.3389/fenvs.2018.00007.
Pietryczuk A, Biziewska I, Imierska M, Czerpak R. (2014). Influence of traumatic acid on growth and metabolism of Chlorella vulgaris under conditions of salt stress. Plant Growth Regulation. 73: 103-110. Doi: 10.1007/s10725-013-9872-x.
Pikula K, Chaika V, Zakharenko A, Markina Z, Vedyagin A, Kuznetsov V, Gusev A, Park S, Golokhvast K. (2020). Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in a bioassay with four marine microalgae. Nanomaterials. 10: 485. Doi: 10.20944/preprints202002.0168.v1.
Piotrowska-Niczyporuk A and Bajguz A. (2014). The effect of natural and synthetic auxins on the growth, metabolite content, and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regulation. 73: 57-66. Doi: 10.1007/s10725-013-9867-7.
Qian H, Xu J, Lu T, Zhang Q, Qu Q, Yang Z, Pan X. (2018). Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. Science of the Total Environment. 625: 1415-1422. Doi: 10.1016/j.scitotenv.2018.01.053.
Qian H, Xu X, Chen W, Jiang H, Jin Y, Liu W, Fu Z. (2009). Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere. 75: 368-375. Doi: 10.1016/j.chemosphere.2008.12.040.
Raman V, Ravi S.( 2011). Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiologiae Plantarum. 33: 1043-1049. Doi: 10.1007/s11738-010-0623-6.
Shanab S, Hafez RM, Fouad AS. (2018). A review of algae and plants as potential sources of arachidonic acid. Journal of Advanced Research, 11: 3-13. Doi: 10.1016/j.jare.2018.03.004.
Sharathchandra K and Rajashekhar M. (2011). Total lipid and fatty acid composition in some freshwater cyanobacteria. Journal of Algal Biomass Utilization. Environmental Science and Pollution Research. 2 (2): 83-97. Doi: 10.1007/s11356-015-4790-2.
Sorokina KN, Samoylova YV, Parmon VN. (2020). Comparative analysis of microalgae metabolism on BBM and municipal wastewater during salt-induced lipid accumulation. Bioresource Technology Reports. 11: 100548. Doi: 10.1016/j.biteb.2020.100548.
Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho S-H, Show PL. (2020). A review of microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered. 11: 116-129. Doi: 10.1080/21655979.2020.1711626.
Vargas-Estrada L, Torres-Arellano S, Longoria A, Arias DM, Okoye PU, Sebastian P. (2020). Role of nanoparticles on microalgal cultivation. Fuel (a review). 280: 118598. Doi: 10.1016/j.fuel.2020.118598.
Wu JT, Chiang YR, Huang W Y, Jane W N. (2006). Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquatic Toxicology. 80: 338-45. Doi: 10.1016/j.aquatox.2006.09.011.
Yu Z, Hao R, Zhang L, Zhu Y. (2018). Effects of TiO2, SiO2, Ag, and CdTe/CdS quantum dots nanoparticles on the toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety. 156: 75-86. Doi: 10.1016/j.ecoenv.2018.03.007.
Zhekisheva M, Boussiba S, Khozin‐Goldberg I, Zarka A, Cohen Z. (2002). Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters 1. Journal of phycology. 38: 325-33. Doi: 10.1046/j.1529-8817.2002.01107.x.