Azeez RA. (2010). A study on the effect of temperature on the treatment of industrial wastewater using Chlorella vulgaris alga. Algae. 8: 9.
Baltrėnas P, Baltrėnaitė E, Baltrėnas P, Baltrėnaitė E. (2020). The major properties of natural materials in biofiltration systems. Sustainable Environmental Protection Technologies: Contaminant Biofiltration, Adsorption, and Stabilization. 259-357. https://doi.org/10.1007/978-3-030-47725-7_6.
Bootsma HA, Young EB, Berges JA. (2004). Temporal and spatial patterns of Cladophora biomass and nutrient stoichiometry in Lake Michigan. Cladophora Research and Management in the Great Lakes: 81.
Bressani-Ribeiro T, Almeida P, Volcke E, Chernicharo C. (2018). Trickling filters following anaerobic sewage treatment: state of the art and perspectives. Environmental Science: Water Research and Technology. 4 (11): 1721-1738. https://doi.org/10.1039/C8EW00330K.
Chen Y and Xu C. (2021). How to narrow the CO
2 gap from growth-optimal to flue gas levels by using microalgae for carbon capture and sustainable biomass production. Journal of Cleaner Production. 280 (2): 124448.
https://doi.org/10.1016/j.jclepro.2020.124448.
De-Bashan LE, Hernandez JP, Morey T, Bashan Y. (2004). Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research. 38 (2): 466-474.
https://doi.org/10.1016/j.watres.2003.09.022.
De-Bashan LE, Moreno M, Hernandez JP, Bashan Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae
Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium
Azospirillum brasilense. Water Research. 36 (12): 2941-2948.
https://doi.org/10.1016/S0043-1354(01)00522-X.
Delhoménie M, Heitz M. (2005). Biofiltration of Air: A Review. Critical Reviews in Biotechnology. 25: (1-2): 53-72. https://doi.org/10.1080/07388550590935814.
Eroglu E, Smith SM, Raston CL. (2015). Application of various immobilization techniques for algal bioprocesses. Biomass and Biofuels from Microalgae: Advances in Engineering and Biology. 19-44. https://doi.org/ 10.1007/978-3-319-16640-7_2.
Fouilland E. (2012). Biodiversity as a tool for waste phycoremediation and biomass production. Reviews in Environmental Science and Biotechnology. 11 (1): 1-4. https://doi.org/10.1007/s11157-012-9270-2.
González LE, Cañizares RO, Baena S. (1997). The efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae
Chlorella vulgaris and
Scenedesmus dimorphus. Bioresource Technology. 60 (3): 259-262.
https://doi.org/10.1016/S0960-8524(97)00029-1.
He P, Mao B, Lü F, Shao L, Lee D, Chang J. (2013). The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewater. Bioresource Technology. 146: 562-568.
https://doi.org/10.1016/j.biortech.2013.07.111.
He S and Xue G. (2010). Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). Journal of Hazardous Materials. 178 (1-3): 895-899.
https://doi.org/10.1016/j.jhazmat.2010.02.022.
Jain C, Bandyopadhyay A, Bhadra A. (2010). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment 166: 663-676. https://doi.org/10.1007/s10661-009-1031-5.
Kim SK. (2011). Handbook of marine macroalgae: biotechnology and applied phycology. John Wiley and Sons.
Lau P, Tam N, Wong Y. (1997). Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized
Chlorella vulgaris. Environmental Technology. 18 (9): 945-951.
https://doi.org/10.1080/09593331808616614.
Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A. (2019). Eutrophication: a new wine in an old bottle? Science of the Total Environment. 651: 1-11.
https://doi.org/10.1016/j.scitotenv.2018.09.139.
Liang Z, Liu Y, Ge F, Xu Y, Tao N, Peng F, Wong M. (2013). Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere. 92 (10): 1383-1389. https://doi.org/10.1016/j.chemosphere.2013.05.014.
Mahmoud M and Mohamed SA. (2017). Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation. HBRC Journal. 13 (3): 245-254.
https://doi.org/10.1016/j.hbrcj.2015.06.003.
McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ, Frigon JC, Guiot SR, O'Leary SJ. (2012). Assessment of the bioenergy and bioremediation potentials of the microalga
Scenedesmus sp. AMDD is cultivated in municipal wastewater effluent in batch and continuous modes. Algal Research. 1 (2): 155-165.
https://doi.org/10.1016/j.algal.2012.05.001.
Mihranyan A. (2011). Cellulose from cladophorales green algae: From environmental problem to high‐tech composite materials. Journal of Applied Polymer Science. 119 (4): 2449-2460.
https://doi.org/10.1002/app.32959.
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. (2022). A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered. 13 (4): 8432-8477.
https://doi.org/10.1080/21655979.2022.2050538.
Petrovič A and Simonič M. (2016). Removal of heavy metal ions from drinking water by alginate-immobilized Chlorella sorokiniana. International Journal of Environmental Science and Technology. 13: 1761-1780. https://doi.org/10.1007/s13762-016-1015-2.
Pires J, Alvim-Ferraz M, Martins F, Simões M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research. 20: 5096-5105. https://doi.org/10.1007/s11356-013-1791-x.
Prajapati SK, Kaushik P, Malik A, Vijay VK. (2013). Phycoremediation coupled production of algal biomass, harvesting, and anaerobic digestion: possibilities and challenges. Biotechnology Advances. 31 (8): 1408-1425.
https://doi.org/10.1016/j.biotechadv.2013.06.005.
Rawat I, Kumar RR, Mutanda T, Bux F. (2011). Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy 88(10): 3411-3424.
https://doi.org/10.1016/j.apenergy.2010.11.025.
Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. (2013). Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. Journal of Applied Phycology 25: 1529-1537. https://doi.org/10.1007/s10811-013-9982-x.
Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology. 101 (1): 58-64.
https://doi.org/10.1016/j.biortech.2009.02.076.
Sarada R, Vidhyavathi R, Usha D, Ravishankar G. (2006). An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry. 54 (20): 7585-7588.
https://doi.org/10.1021/jf060737t.
Sriram S and Seenivasan R. (2012). Microalgae cultivation in wastewater for nutrient removal. Algal Biomass Utilization. 3 (2): 9-13. https://storage.unitedwebnetwork.com/files/521/f0b1f8c7b925deebd4570c98852dba20.pdf.
Su Y, Mennerich A, Urban B. (2012). Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresource Technology. 105: 67-73.
https://doi.org/10.1016/j.biortech.2011.11.113.
Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International. 51: 59-72.
https://doi.org/10.1016/j.envint.2012.10.007.
Thumvijit T, Thuschana W, Amornlerdpison D, Peerapornpisal Y, Wongpoomchai R. (2013). Evaluation of hepatic antioxidant capacities of
Spirogyra neglecta (Hassall) Kützing in rats. Interdisciplinary Toxicology 6 (3): 152-156.
https://doi.org/10.2478/intox-2013-0024.
Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez A. (1996). Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresource Technology. 55 (3): 181-186.
https://doi.org/10.1016/0960-8524(95)00196-4.
Valderrama LT, Del Campo CM, Rodriguez CM, de-Bashan LE, Bashan Y (2002). Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte
Lemna minuscula. Water Research. 36 (17): 4185-4192.
https://doi.org/10.1016/S0043-1354(02)00143-4.
Vasseur C, Bougaran G, Garnier M, Hamelin J, Leboulanger C, Le Chevanton M, Mostajir B, Sialve B, Steyer JP, Fouilland E. (2012). Carbon conversion efficiency and population dynamics of marine algae–bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion. Bioresource Technology. 119: 79-87.
https://doi.org/10.1016/j.biortech.2012.05.128.
Wada Y, Gleeson T, Esnault L. (2014). Wedge approach to water stress. Nature Geoscience. 7 (9): 615-617. https://doi.org/10.1038/ngeo2241.