Al-Qurainy F. (2009). Effects of sodium azide on growth and yield traits of Eruca sativa (L.). World Applied Sciences Journal. 7 (2): 220-226.
Apel K and Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55: 373-399.
Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72 (1-2): 248-254.
Chen HH, Xue LL, Liang MH, Jiang JG. (2019). Sodium azide intervention, salinity stress and two-step cultivation of Dunaliella tertiolecta for lipid accumulation. Enzyme and Microbial Technology. 127: 1-5.
Cheng JS, Niu YH, Lu SH, Yuan YJ. (2012) Metabolome analysis reveals ethanolamine as potential marker for improving lipid accumulation of model photosynthetic organisms. Journal of Chemical Technology and Biotechnology. 87 (10): 1409-1418.
Czygan F. (1970). Blood-rain and blood-snow: nitrogen-deficient cells of Haematococcus pluvialis and Chlamydomonas nivalis. Archiv fur Mikrobiologie 74 (1): 69.
Fales FW. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry. 193 (1): 113-124.
Forti G and Gerola P. (1977). Inhibition of photosynthesis by azide and cyanide and the role of oxygen in photosynthesis. Plant physiology. 59 (5): 859-862.
Hunt RW, Chinnasamy S, Bhatnagar A, Das K. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology. 162 (8): 2400-2414.
Kobayashi M, Kakizono T, Nagai S. (1993). Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and Environmental Microbiology. 59 (3): 867-873.
Lorenz RT. (1999). A technical review of Haematococcus algae. NatuRoseTM Technical Bulletin. 60: 1-12.
Morales I, Batuecas S, de la Rosa F.F (1992). Storage of solar energy by production of hydrogen peroxide by the blue‐green alga Anacystis nidulans R2: Stimulation by azide. Biotechnology and Bioengineering. 40 (1): 147-150.
Nultsch W, Schuchart H, Koenig F. (1983). Effects of sodium azide on phototaxis of the blue-green alga Anabaena variabilis and consequences to the two-photoreceptor systems-hypothesis. Archives of Microbiology. 134 (1): 33-37.
O'Connor I and O'Brien N. (1998). Modulation of UVA light-induced oxidative stress by β-carotene, Lutein and astaxanthin in cultured fibroblasts. Journal of Dermatological Science. 16 (3): 226-230.
Siegień I, Bogatek R. (2006). Cyanide action in plants—from toxic to regulatory. Acta Physiologiae Plantarum. 28 (5): 483-497.
Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W. (2014). Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresource Technology. 170: 522-529.
Şükran D, Gunes T, Sivaci R. (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany. 22 (1): 13-18.
Tripathi U, Sarada R, Rao SR, Ravishankar. G. (1999). Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresource Technology. 68 (2): 197-199.
Yahya NA, Suhaimi N, Kaha M, Hara H, Zakaria Z, Sugiura N, Othman NA, Iwamoto K. (2018). Lipid production enhancement in tropically isolated microalgae by azide and its effect on fatty acid composition. Journal of Applied Phycology. 30 (6): 3063-3073.
Zalogin TR and Pick U. (2014). Inhibition of nitrate reductase by azide in microalgae results in triglycerides accumulation. Algal Research 3: 17-23.