Evaluation of the Effect of Sargassum angustifolium C. Agardh Extract on Growth and Yield Indices of Lactuca sativa L. Under Drought Stress Conditions

Document Type : Original Article

Author

Research and technology institute of plant production, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Lettuce (Lactuca sativa) represents a major horticultural crop in Iran and worldwide. Lettuce requires a high amount of water to grow well and is adversely affected by drought. Regarding the reports of the positive effect of seaweed extract on increasing the resistance of plants to abiotic stresses, the present study aimed to evaluate the effect of the seaweed Sargassum angustifolium extract on growth and yield indices of lettuce under drought stress. This study was conducted as a factorial experiment with three treatments of algae extracts concentrations and two treatments of drought stress, and non-stress treatment with three replications. To evaluate the effects of algae extract on lettuce under drought stress conditions, a combination of morphological and physiological characteristics including plant height and dry weight, photosynthetic pigment content, and antioxidant activities were measured. Results showed that treatment of seaweed extract significantly increased plant resistance to drought stress and improved morphological and physiological indices of lettuce (p< 0.05). The best results were obtained in the 1.5 g/l treatment of seaweed extract.

Keywords


Alharbi K, Amin M. A, Ismail M. A, Ibrahim M. T, Hassan S, Fouda, A. (2022). Alleviate the drought stress on Triticum aestivum L. Using the Algal Extracts of Sargassum latifolium and Corallina elongate Versus the Commercial Algal Products. Life. 12 (11): 1757. DOI: 10.3390/life12111757.
Baltrusch K, Flórez-Fernández N, Illera M, Torres M. D, López-Mosquera M, Domínguez H. (2023). Potential use of Sargassum muticum as a source of plant biostimulants after three different drying methods. Journal of Applied Phycology. 1-13. DOI: 10.1007/s10811-023-02907-2.
Bitarafan Z, Asghari H. R, Hasanloo T, Gholami A, Moradi F. (2019). Fenugreek (Trigonella foenum-graecum L.) Landraces Response to Biochar Application under Deficit Irrigation. Journal of Agroecology. 11 (2): 403-415. Doi: 10.22067/jag.v11i2.67531.
Blum A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell  Environment. 40 (1):  4-10. Doi:  10.1111/pce.12800.
Elferjani R and Soolanayakanahally R. (2018). Canola responses to drought heat and combined stress: shared and specific effects on carbon assimilation seed yield and oil composition, Frontiers in plant science. 9: 1224. DOI: 10.3389/fpls.2018.01224.
Erulan V, Soundarapandian P, Thirumaran G,  Ananthan G. (2009). Studies on the effect of Sargassum polycystum (C, Agardh 1824) extract on the growth and biochemical composition of Cajanus cajan (L,) Mill sp, American-Eurasian. Journal of Agricultural and Environmental Science. 6 (4): 392-399. DOI: 10.1007/s10811-022-02872-2.
Fang Y and Xiong L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences. 72 (4): 673-689. DOI: 10.1007/s00018-014-1767-0.
Golbashy M, Ebrahimi M, Khorasani SK, Choukan R. (2010). Evaluation of drought tolerance of some corn (Zea mays L,) hybrids in Iran. African Journal of Agricultural Research. 5 (19): 2714-2719. DOI: 10.3389/fpls.2021.661909.
Haghparast M,  Maleki Farahani, S. (2013). Effect of water deficit irrigation and natural products on vegetative characteristics of different chickpea (Cicer arietinum) varieties. Iranian Journal Pulses Research. 4 (2): 43-61. DOI:10.1016/j.carpta.2021.100097.
Hamedeh H, Antoni S, Cocciaglia L, Ciccolini V. (2022). Molecular and physiological effects of magnesium–polyphenolic compound as biostimulant in drought stress mitigation in tomato. Plants. 11 (5): 586. DOI: 10.3390/plants11050586.
Hernández-Herrera M, Santacruz-Ruvalcaba F, Briceño-Domínguez R, Di Filippo-Herrera D, Hernández-Carmona G. (2018). Seaweed is a potential plant growth stimulant for agriculture in Mexico. Hidrobiológica. 28 (1): 129-140, Doi: 10.1007/s10811-015-0608-3.
Kumari R, Kaur I, Bhatnagar K. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell and Gardner on growth yield and quality of Lycopersicon esculentum Mill. Journal of Applied Phycology. 23 (3): 623-633. Doi: 10.1007/s10811-011-9651-x.
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. (2022). Inter‐tissue and inter‐organ signaling in drought stress response and phenotyping of drought tolerance. The Plant Journal. 109 (2): 342-358. Doi: 10.1111/tpj.15619.
Lephatsi M, Nephali L, Meyer V, Piater L. A, Buthelezi N, Dubery I. Tugizimana F. (2022). Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming, and drought stress tolerance in maize plants. Scientific Reports, 12 (1): 10450. Doi: 10.1038/s41598-022-14570-7
Mansori M, Chernane H, Latique S, Benaliat A, Hsissou D, El Kaoua M. (2015) Seaweed extract effect on water deficit and antioxidative mechanisms in bean plants (Phaseolus vulgaris L.). Journal of applied phycology. 27 (4): 1689-1698. Doi: 10.1007/s10811-014-0455-7.
Martynenko A, Shotton K, Astatkie T, Petrash G, Fowler C, Neily W, Critchley T. (2016) Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract. Springer plus. 5 (1): 1393-1398. Doi: 10.1186/s40064-016-3019-2.
Mohammadi S, Etemadi N, Arab M, Aalifar M, Arab M, Pessarakli M. (2017) Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry. 111: 129-143. Doi: 10.1016/j.plaphy.2016.11.014.
Mousavi S. E, Hatamipour M. S, Yegdaneh A. (2023). Ultrasound-assisted extraction of alginic acid from Sargassum angustifolium harvested from Persian Gulf shores using response surface methodology. International Journal of Biological Macromolecules. 226: 660-669. Doi: 10.1016/j.ijbiomac.2022.12.070.
Munné-Bosch S and Villadangos S. (2023). Cheap, cost-effective, and quick stress biomarkers for drought stress detection and monitoring in plants. Trends in Plant Science. 28: 527-536. DOI: 10.1016/j.tplants.2023.01.004.
Murtic S, Oljaca R, Smajic M. (2018). Effects of seaweed extract on the growth, yield, and quality of cherry tomatoes under different growth conditions. Acta agriculturae Slovenica. 111: 315-325. Doi: 10.14720/aas.2018.111.2.07.
Shahriari A. G, Mohkami A, Niazi A, Parizipour M. H. G, Habibi-Pirkoohi M. (2021). Application of brown algae (Sargassum angustifolium) extracts for improvement of drought tolerance in Canola (Brassica napus L.). Iranian Journal of Biotechnology. 19 (1): e2775. Doi: 10.30498/IJB.2021.2775.
Shukla S, Borza T, Critchley A, T, Hiltz D, Norrie J, Prithiviraj B. (2018) Ascophyllum nodosum extract mitigate salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition, PloS One. 13 (10): e0206221.Doi: 10.1371/journal.pone.0206221.
Tinte M, Masike K, Steenkamp A, Huyser J, van der Hooft J, Tugizimana F. (2022). Computational metabolomics tools reveal metabolic reconfigurations underlying the effects of biostimulant seaweed extracts on maize plants under drought-stress conditions. Metabolites. 12 (6): 487-498. Doi:10.3390/metabo12060487.
Wahab A, Abdi, G, Saleem H, Ali B, Ullah S, Shah W, Marc A. (2022). Plants’ physio-biochemical and phytohormone responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants. 11 (13): 1620-1634. Doi: 10.1007/s10811-017-1082-x.
Zhang X, Wang K, Ervin E. (2010). Optimizing dosages of seaweed extract-based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Science. 50 (1): 316-320. Doi: 10.2135/cropsci2009.02.0090.