Effluent Diversion to Revive Urmia Lake (Iran) and its Negative Effect on Phytoplankton Composition

Document Type : Original Article

Authors

1 Assistant Prof., National Artemia research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Uramia, Iran

2 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran

3 National Artemia research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Urmia, Iran

4 National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Urmia, Iran

5 Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Urmia, Iran

Abstract

Saline lakes are valuable environments which are undergone shrinking due to the global warming and anthropogenic factors. As one of the major hypersaline lakes in the world and the natural habitat of the brine shrimp Artemia urmiana, the desiccation of Urmia Lake (Iran) can be a catastrophe. One of the implemented strategies by officials against the shrinking of this lake is diverting the effluents into the lake. Despite some advantages, this approach can negatively impact the microflora of the lake. Dunaliella was the dominant genus with a density of 98.63 through a 12-month study in Zanbil, Agh Gonbad, Kazem Dashi, and Myan Gozarstations. The analysis revealed the higher percentage of Oscillatoria sp. during February 2023, in the stations of Zanbil, Agh Gonbad, and Myan Gozar. Due to the proximity of these stations to the point where the water effluent from Urmia City's wastewater treatment plant enters Urmia Lake, the increased levels of nitrogen and phosphorus in the effluent can be attributed to this phenomenon.  The toxic nature of this blue-green alga towards Artemia means that utilizing effluent to restore Urmia Lake has the potential to disrupt the lake's food chain.

Keywords


Abadi B. (2019). How does agriculture contribute to reviving the endangered ecosystem of Lake Urmia? The case of agricultural systems in northwestern Iran. Journal of Environmental Management. 236: 54-67. Doi: 10.1016/j.jenvman.2019.01.111.
Alipour H and Olya HGT. (2014). Sustainable planning model toward reviving Lake Urmia. International Journal of Water Resources Development. 31(4): 519-539. Doi: 10.1080/07900627.2014.949636.
Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D. (2014). Toxicity effect of silver nanoparticles in brine shrimp Artemia. The Scientific World Journal. 2014: 256919.  Doi: 10.1155/2014/256919.
Barrett KL and Belovsky GE. (2020). Invertebrates and phytoplankton of Great Salt Lake: Is Salinity the driving factor? In: Baxter B and Butler J. (ed) Great Salt Lake biology. Springer, Cham. Doi: 10.1007/978-3-030-40352-2_6.
Bellinger ED. (1992). A key to common algae. The Institution of Water and Environmental Management, London.
Boyle TP and Fraleigh Jr HD. (2003). Natural and anthropogenic factors affecting the structure of the benthic macroinvertebrate community in an effluent-dominated reach of the Santa Cruz River, AZ. Ecological Indicators. 3(2): 93-117. Doi: 10.1016/S1470-160X(03)00014 -1.
Chow-Fraser P, Lougheed V, Le Thiec V, Crosbie B, Simser L, Lord J. (1998). Long-term response of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Wetlands Ecology and Management. 6 (1): 19-42. Doi: 10.1023/a:1008491520668.
Du B, Haddad SP, Luek A, Scott WC, Saari GN, Kristofco LA, Connors KA, Rash C, Rasmussen JB, Chambliss CK, Brooks BW. (2014). Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream.  Philosophical Transactions of the Royal Society B: Biological Sciences. 369(1656): 20140058. Doi: 10.1098/rstb.2014.0058.
Eimanifar A and Mohebbi F. (2007). Urmia Lake (Northwest Iran): a brief review. Aquatic Biosystems. 3: 5. Doi: 10.1186/1746-1448-3-5.
Esmaeili L, Negarestan H, Eimanifar A, Mohebbi F, Ahmadi R. (2010). The fluctuations of physicochemical factors and phytoplankton populations of Urmia Lake, Iran. Iranian Journal of Fisheries Sciences. 9: 368-381.
Eugster HP and Hardie LA. (1978). Saline Lakes. In: Lerman A. (ed) Lakes. Springer. Doi: 10.1007/978-1-4757-1152-3_8.
Feizizadeh B, Blaschke T, Nazmfar H, Rezaei Moghaddam MH. (2013). Landslide susceptibility mapping for the Urmia Lake basin, Iran: A multi-criteria evaluation approach using GIS. International Journal of Environmental Research. 7(2):319-336.
Hamdhani H, Eppehimer DE, Bogan MT. (2020). Release of treated effluent into streams: A global review of ecological impacts with a consideration of its potential use for environmental flows. Freshwater Biology. 65(9): 1657-1670. Doi: 10.1111/fwb.13519.
Larson C and Belovsky G. (2013). Salinity and nutrients influence species richness and even-ness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. Journal of Plankton Research. 35: 1154-1166. Doi: 10.1093/plankt/fbt053.
Litchfield CD. (2011). Saline lakes. Encyclopedia of Earth Sciences Series. 765-769. Doi: 10.1007/978-1-4020-9212-1_178.
Mohebbi F. (2010). The brine shrimp A. urmiana and hypersaline environments microalgal composition: a mutual interaction. International Journal of Aquatic Sciences. 1: 19-27.
Mohebbi F, Hafezieh M, Seidgar M, Hosseinzadeh Sahhafi H, Mohsenpour Azari A, Ahmadi R. (2016). The growth, survival rate and reproductive characteristics of Artemia urmiana fed by Dunaliella tertiolecta, Tetraselmis suecica, Nannochloropsis oculata, Chaetoceros sp., Chlorella sp. and Spirulina sp. as feeding microalgae. Iranian Journal of Fisheries Sciences. 15(2): 727-737.
Muhaemin M. (2004). Toxicity and bioaccumulation of lead in Chlorella and Dunaliella. Journal of Coastal Development. 8(1): 27-34.
Muhlsteinova R, Hauer T, Ley P, Pietrasiak N. (2018). Seeking the true Oscillatoria: A quest for a reliable phylogenetic and taxonomic reference point. Preslia. 90 (2): 151-169. Doi: 10.23855/preslia.2018.151.
Okbah MA and Hussein NR. (2006). Impact of environmental conditions on the phytoplankton structure in Mediterranean Sea lagoon, Lake Burullus, Egypt. Water Air Soil Pollution. 172: 129-150. Doi: 10.1007/s11270-005-9066-x.
Owens EM, Effler SW, Matthews DA, Prestigiacomo AR. (2013). Evaluation of Offshore Wastewater Outfall and Diffuser for Onondaga Lake, NY. Journal of Water Resource and Protection. 5(9A): 36726. Doi: 10.4236/jwarp.2013.59A001.
Pouladi P, Badiezadeh S, Pouladi M, Yousefi P, Farahmand H, Kalantari Z, Yu DJ, Sivapalan M. (2021). Interconnected governance and social barriers impeding the restoration process of Lake Urmia. Journal of Hydrology. 598: 126489. Doi: 10.1016/j.jhydrol.2021.126489.
Prescott GW. (1962). Algae of Western Great Lakes area. WMC, Brown Company Publishing, Iowa.
Rahimi A and Breuste J. (2021). Why is Lake Urmia drying up? prognostic modeling with land-use data and artificial neural network. Frontiers in Environmental Science. 9: 603916. Doi: 10.3389/fenvs.2021.603916.
Sánchez MI, Paredes I, Lebouvier M, Green AJ. (2016). Functional role of native and invasive filter-feeders, and the effect of parasites: learning from hypersaline ecosystems. PLoS One. 11(8): e0161478. Doi: 10.1371/journal.pone.0161478.
Srivastava A and Tc P. (2021). Urban water resource management: experience from the revival of Rajokri lake in Delhi. AIMS Environmental Science. 8(5): 421-434. Doi: 10.3934/environsci.2021027.
Thakkar M, Mitra S, Wei L. (2016). Effect on growth, photosynthesis, and oxidative stress of single walled carbon nanotubes exposure to marine alga Dunaliella tertiolecta. Journal of Nanomaterials. 2016: 8380491. Doi: 10.1155/2016/8380491.
Tiffany LH and Britton ME. (1971). The algae of Illinois. Hanfer Publishing Company.
Utermöhl H. (1958). Zur vervollkommnug der quantitativenphytoplankton methodik. mittint. verein. Theor. Angew. Limnology and Oceanography. 9: 1-38.
Venrick EL. (1978). How many cells to count? In: Sournia A. (ed) Phytoplankton manual: monographs on oceanographic methodology. UNESCO. pp. 167-180.
Vidya V, Prasad G, Sheela AM. (2020). Assessment of threats to a Ramsar site from seafood processing operation effluents. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use. 25(2): 196-213. Doi: 10.1111/lre.12321.
Williams WD. (1996). What future for saline lakes? Environment. 38: 12-39.
Wurtsbaugh WA, Miller C, Null SE, DeRose RJ, Wilcock P, Hahnenberger M, Howe F, Moore J. (2017). Decline of the world’s saline lakes. Nature Geoscience. 10 (11): 816-821. Doi: 10.1038/ngeo3052.
Wurtsbaugh WA, Paerl HW, Dodds WK. (2019). Nutrients, eutrophication, and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water. 6 (5): e1373. Doi:10.1002/wat2.1373.