Enhancement of β-Carotene Biosynthesis in Microalga Dunaliella salina: Mixotrophic Cultivation and Static Magnetic Field Treatment

Document Type : Original Article

Authors

1 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Iran

2 Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.

3 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155−6451, Tehran 1417614411, Iran

Abstract

Carotenoids, such as β-carotene and astaxanthin, are the most important photosynthetic metabolites found in microalgae. They have several properties such as antioxidant and antidiabetic activities. β-Carotene is one of the precursors of vitamin A possessing useful applications in the food industry, cosmetics, and pharmaceuticals. The microalga Dunaliella salina is known as one of the biological producers of this valuable pigment, thanks to the lack of a rigid cell wall and shorter cultivation time. The optimization of culture medium for D. salina through the application of appropriate operational conditions such as static magnetic fields, can significantly impact biomass and carotenoids production. In this study, mixotrophic cultivation of D. salina was examined by adding different organic carbon sources, including glucose, fructose, acetate, malonate, glycerol, and starch, each at two levels of concentration. The inhibitory effect of malonate and glycerol on both growth and β-carotene production was observed. Starch demonstrated higher biomass production (1.22 g L−1) and β-carotene accumulation (10.12 mg L−1) compared to other carbon sources. Based on its superior performance, the optimization process was continued using 7.0 g L−1 of starch as the optimum concentration. Subsequently, static magnetic fields with two intensities (10 and 30 mT) were applied to the mixotrophic samples at various exposure times (1 and 24 h day−1). The results revealed that the 24-hour treatment with both intensities improved biomass production (2.18 g L−1) and β-carotene concentration (6 mg L−1) by up to 25% in the culture of D. salina enriched with an organic carbon source.

Keywords


Bajpai I, Saha N, Basu B (2012) Moderate intensity static magnetic field has a bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 100 (5): 1206-1217. Doi: 10.1002/jbm.b.32685.
Bauer LM, Costa JAV, da Rosa APC, Santos LO (2017) Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresource Technology 244:1425-1432. Doi: 10.1016/j.biortech.2017.06.036.
Bohne F, Linden HJBeBA-GS, Expression (2002). Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii.  1579 (1): 26-34. Doi: 10.1016/S0167-4781(02)00500-6.
Ceron Garcia M, Camacho FG, Mirón AS, Sevilla JF, Chisti Y, Grima EM (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of microbiology and biotechnology. 16 (5): 689.
Chavoshi ZZ, Shariati M (2019). Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions. Biologia. 74 (12):1579-1590. Doi: 10.2478/s11756-019-00336-6.
Chen H, Jiang J-G, Wu G-H (2009). Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. Journal of Agricultural and Food Chemistry. 57 (14):6178-6182. Doi: 10.1021/jf900447r.
Chu FJ, Wan T-J, Pai T-Y, Lin H-W, Liu S-H, Huang C-FJJoem (2020). Use of magnetic fields and nitrate concentration to optimize the growth and lipid yield of Nannochloropsis oculata.  253: 109680. DOi: 10.1016/j.jenvman.2019.109680.
Comstock GW, Bush TL, Helzlsouer K (1992). Serum retinol, beta-carotene, vitamin E, and selenium as related to subsequent cancer of specific sites. American Journal of Epidemiology 135 (2): 115-121. Doi: 10.1093/oxfordjournals.aje.a116264.
Deamici KM, Cardias BB, Costa JAV, Santos LOJPB (2016a) Static magnetic fields in the culture of Chlorella fusca: Bioeffects on growth and biomass composition. 51 (7): 912-916.. Doi: 10.1016/j.procbio.2016.04.005.
Deamici KM, Costa JAV, Santos LOJBt (2016b). Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Bioresource Technology. 220: 62-67. Doi: 10.1016/j.biortech.2016.08.038.
Eijckelhoff C and Dekker JP. (1997). A routine method to determine the chlorophyll a, pheophytin a, and β-carotene contents of isolated Photosystem II reaction center complexes. Photosynthesis Research. 52 (1):69-73. Doi: 10.1023/A:1005834006985.
Folch J, Lees M, Stanley GS. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry. 226 (1):497-509.
Frings CS and Dunn RT. (1970) A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. American Journal of Clinical Pathology. 53 (1):89-91. Doi: 10.1093/ajcp/53.1.89.
Garcıa MC, Mirón AS, Sevilla JF, Grima EM, Camacho FG. (2005). Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochemistry. 40 (1): 297-305. Doi: 10.1016/j.procbio.2004.01.016.
Gong M and Bassi AJBA (2016) Carotenoids from microalgae: A review of recent developments.  34 (8): 1396-1412. Doi: 10.1016/j.biotechadv.2016.10.005.
Griffiths MJ, Dicks RG, Richardson C, Harrison STJB-f, Technologies p. (2011). Advantages and challenges of microalgae as a source of oil for biodiesel. 177-200.
Han S, Jin W, Chen Y, Tu R, Abomohra AE-F. (2016). Enhancement of lipid production of Chlorella pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Applied Biochemistry and Biotechnology. 180 (6): 1043-1055. Doi: 10.1007/s12010-016-2151-3.
Haque A, Perwaiz MA, Pawar VN. (2016). Effects of Static Magnetic Field on The Colony of Micro-Orgenism. 5 (5): 16-18.
He F. (2011). Bradford protein assay. Bio-protocol, 1 (6): e45-e45.
He Q, Lin Y, Tan H, Zhou Y, Wen Y, Gan J, Li R, Zhang QJBg. (2020). Transcriptomic profiles of Dunaliella salina in response to hypersaline stress. BMC Genomics. 21 (1): 115. Doi: 10.1186/s12864-020-6507-2.
Hejazi M and Wijffels R. (2003). Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomolecular Engineering. 20 (4-6): 171-175. Doi: 10.1016/S1389-0344(03)00046-7.
Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS. (1968). Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology. 95 (4): 1461-1468. Doi: 10.1128/jb.95.4.1461-1468.1968.
Kthiri A, Hidouri S, Wiem T, Jeridi R, Sheehan D, Landouls AJPo. (2019). Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLOS ONE. 14 (1): e0209843. Doi: 10.1371/journal.pone.0209843.
Laurens LM, Dempster TA, Jones HD, Wolfrum EJ, Van Wychen S, McAllister JS, Rosenberger M, Parchert KJ, Gloe LM. (2012). Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Analytical Chemistry. 84 (4):1879-1887. Doi: 10.1021/ac202668c.
Letuta U, Tikhonova T. (2019). Magnetic fields and magnetic isotope 25 Mg effects on biofilms formation by bacteria E. coli. In: Doklady Biochemistry and Biophysics. 484: 85-87. DOi: 10.1134/S160767291901023X.
Letuta UG and Berdinskiy VL. (2017). Magnetosensitivity of bacteria E. coli: Magnetic isotope and magnetic field effects. Bioelectromagnetics. 38 (8): 581-591. Doi: 10.1002/bem.22073.
Mohamadnia S, Tavakoli O, Faramarzi MA, Shamsollahi ZJA. (2020a). Production of fucoxanthin by the microalga Tisochrysis lutea: a review of recent developments. Aquaculture. 516:734637. DOi: 10.1016/j.aquaculture.2019.734637.
Mohamadnia S, Tavakoli O, Faramarzi MAJA (2020b) Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea. Aquaculture.736074. Doi: 10.1016/j.aquaculture.2020.736074.
Mohamadnia S, Thygesen A., Ghofrani-Isfahani P, Monachese AP, Valverde-Pérez B, Angelidaki I. (2023). Valorization of potato starch wastewater using anaerobic acidification coupled with Chlorella sorokiniana cultivation. Journal of Applied Phycology. 35 (6): 2645-2658. Doi: 10.1007/s10811-023-03046-4.
Mojaat M, Pruvost J, Foucault A, Legrand J. (2008). Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochemical Engineering Journal. 39 (1):177-184. Doi: 10.1016/j.bej.2007.09.009.
Organization WHO. (2006). Environmental health riteria 232. Static Fields. World Health Organization: Geneva, Switzerland.
Pazur A, Schimek C, Galland P. (2007). Magnetoreception in microorganisms and fungi. Open Life Sciences. 2 (4): 597-659. Doi: 10.2478/s11535-007-0032-z.
Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M. (2004). Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutation Research. 561 (1-2): 53-62. Doi: 10.1016/j.mrgentox.2004.03.009.
Rufino M, Alves RE, de Brito ES, de Morais SM, Sampaio CdG, Pérez-Jimenez J, Saura-Calixto FDJEAT-CT. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico.
Shao W, Ebaid, R, Abomohra AEF, Shahen M. (2018). Enhancement of Spirulina biomass production and cadmium biosorption using combined static magnetic field. Bioresource Technology. 265: 163-169. DOi: 10.1016/j.biortech.2018.06.009.
Small DP, Hüner NP, Wan W. (2012). Effect of static magnetic fields on the growth, photosynthesis, and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics. 33 (4): 298-308. DOi: 10.1002/bem.20706.
Stahl W and Sies HJMaom (2003) Antioxidant activity of carotenoids. Molecular Aspects of Medicine. 4 (6): 3 45-351. Doi: 10.1016/S0098-2997(03)00030-X.
Tu R, Jin W, Xi T, Yang Q, Han S-F, Abomohra AE-F. (2015). Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Research. 86: 132-138 . Doi: 10.1016/j.watres.2015.07.039.
Veiga MC, Fontoura MM, de Oliveira MG, Costa JAV, Santos LOJB, Engineering B. (2020). Magnetic fields: biomass potential of Spirulina sp. for food supplement. Bioprocess and Biosystems Engineering. 43: 1231-1240. Doi: 10.1007/s00449-020-02318-4.
Velu P, Peter M.J, Sanniyasi E. (2015). Effect of various carbon sources on biochemical production in marine microalgae Nannochloropsis salina (Eustigmatophyceae), Dunaliella tertiolecta (Chlorophyceae) and Tetraselmis suecica (Chlorodendrophyceae). International Journal of Current Microbiolology and Applied Sciences. 4: 207-215.
Wang HY, Zeng XB, Guo SY, Li ZT. (2008). Effects of magnetic field on the antioxidant defense system of recirculation‐cultured Chlorella vulgaris. Bioelectromagnetics. 29 (1): 39-46. Doi: 10.1002/bem.20360.
Zarandi-Miandoab L, Hejazi MA, Bagherieh-Najjar MB, Chaparzadeh N. (2019). Optimization of the four most effective factors on β-carotene production by Dunaliella salina using response surface methodology. Iranian Journal of Pharmaceutical Research. IJPR 18 (3): 1566. DOi: 10.22037/ijpr.2019.1100752.