Evaluation of the Hormonal Changes in the Model Plant Arabidopsis thaliana as the Consequence of Pseudomonas aeruginosa Infection

Document Type : Original Article

Authors

1 Department of Cellular and Molecular Biology Faculty of Life Sciences and Biotechnology Shahid Beheshti University Postal Code: 1983969411

2 Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Plants sense the microbial pathogen by perceiving the microbial signals through their highly specific immune receptors. These immune receptors are located on the plasma membrane and sense all types of microbes. Research over the last twenty years has shown the importance of Arabidopsis thaliana for the study of microbe-host interactions. The ability to sequence whole genomes of Arabidopsis thaliana has changed our view of biology. Here, the study of hormonal changes under the influence of biological stress of Pseudomonas aeruginosa bacteria was investigated. The bacterium P. aeruginosa was isolated from oil, cultured in a laboratory environment, and then sprayed onto Arabidopsis plants for stress evaluation. 24 hours after the application of stress, the hormones were measured by high-performance liquid chromatography (HPLC). According to the results, all hormones involved in the plant's immune system were significantly altered in response to stress by P. aeruginosa. The study revealed that the hormons salicylic, gibberellic acid, and jasmonic acid were the most altered compared to the control plants. While high levels of the hormones salicylic acid, gibberellic acid, and jasmonic acid hormones were observed, in other hormones such as melatonin and abscisic acid did not show asignificant changes. Among the elevated hormones, the levels of the hormones salicylic acid and jasmonic acid were highly statistically significant compared to the controls. These results confirm the specificity of hormone activation and P. aeruginosa specifically activates only defense-related hormones. Moreover, the findings of this study can be used for subsequent insvetigations on microbe-host interactions and future microbe infection control programs.

Keywords


Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV, Zemlyanskaya EV. (2022). Salicylic Acid in Root Growth and Development. International Journal of Molecular Sciences. 17; 23 (4): 2228. Doi: 10.3390/ijms23042228.
Bhardwaj V, Meier S, Petersen LN, Ingle RA, Roden LC. (2011). Defense responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLOS ONE. 6 (10):e26968. Doi: 10.1371/journal.pone.0026968.
Bigeard J, Colcombet J, Hirt H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant. 8(4):521-39. Doi: https://doi.org/10.1016/j.molp.2014.12.022
Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C. (2019). A role for Zinc in plant defense against pathogens and herbivores. Frontier in Plant Sciences. 4 (10): 1171. Doi: https://doi.org/10.3389/fpls.2019.01171.
Collins CA, LaMontagne ED, Anderson JC, Ekanayake G, Clarke AS, Bond LN, Salamango DJ, Cornish PV, Peck Sc, Heese A. (2020). EPSIN1 Modulates the plasma membrane abundance of FLAGELLIN SENSING2 for effective immune responses. Plant Physiology. 182 (4):1762- 1775. Doi: https://doi.org/10.1104/pp.19.01172.
DeFalco TA and Zipfel C. (2021). Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell. 2; 81 (17): 3449-3467. Doi: https://doi.org/10.1016/j.molcel.2021.07.029.
Ding Y, Fan B, Zhu C, Chen Z. (2023). Shared and related molecular targets and actions of Salicylic acid in plants and humans. Cells. 4, 12 (2): 219. Doi: 10.3390/cells12020219.
Felix G, Duran JD, Volko S, Boller T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal. 18 (3): 265-76. Doi: https://doi.org/10.1046/j.1365-313X.1999.00265.x
Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP. (2008). Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology. 147 (3): 1279-87. Doi: 10.1104/pp.108.119420.
Gautam S, Gadhave KR, Buck JW, Dutta B, Coolong T, Adkins S, Simmons AM, Srinivasan R. (2023). Effects of host plants and their infection status on acquisition and inoculation of a plant virus by its Hemipteran vector. Pathogens. 1; 12 (9): 1119. Doi: 10.3390/pathogens12091119.
Gruszka D. (2018). Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. International Journal of Molecular Sciences. 9; 19 (9): 2675. Doi: 10.3390/ijms19092675.
Guan R, Su J, Meng X, Li S, Liu Y, Xu J, Zhang S. (2015). Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae. Plant Physiology. 169 (1): 299-312. Doi: https://doi.org/10.1104/pp.15.00659.
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, et al. (2019). Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science. 22; 363 (6433). Doi: https://doi.org/10.1126/science.aar7486.
Hedden P. (2020). The Current Status of Research on Gibberellin Biosynthesis. Plant Cell Physiology. 23;61(11):1832-1849. Doi: 10.1093/pcp/pcaa092.
Huang PY, Catinot J, Zimmerli L. (2015). Ethylene response factors in Arabidopsis immunity. J Exp Bot. 2016;67(5):1231-41. doi: 10.1093/jxb/erv518.
Huot B, Castroverde CDM, Velásquez AC, Hubbard E, Pulman JA, Yao J, Childs KL, Tsuda K, Montgomery BL, He SY. (2017). Dual impact of elevated temperature on plant defense and bacterial virulence in Arabidopsis. Nature Communication. 27; 8 (1): 1808. Doi: 10.1038/s41467-017-01674-2.
 Jones JD, Vance RE, Dangl JL. (2016). Intracellular innate immune surveillance devices in plants and animals. Science. 2; 354 (6316). Doi: https://doi.org/10.1126/science.aaf6395
Jurado-Martín I, Sainz-Mejías M, McClean S. (2021). Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences. 18; 22 (6): 3128. Doi: 10.3390/ijms22063128.
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. (2022). Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontier in Plant Sciences. 14 (13): 972856. Doi: 10.3389/fpls.2022.972856.
Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U. (2020). Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiology Review. 24; 44 (6): 740-762. Doi: 10.1093/femsre/fuaa029. PMID: 32990729; PMCID: PMC7685784.Li B, Meng X, Shan L, He P. (2016). Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host Microbe. 11; 19 (5): 641-50. https://doi.org/10.1016/j.chom.2016.04.011.
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. (2015). Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100.Elife. 15 (4). Doi: https://doi.org/10.7554/eLife.07295.
Mermigka G, Amprazi M, Mentzelopoulou A, Amartolou A, Sarris PF. (2020). Plant and animal innate immunity complexes: fighting different enemies with similar weapons. Trends in Plant Sciences. 25 (1): 80-91. Doi: 10.1016/j.tplants.2019.09.008.
Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y. (2018). Transcriptome landscape of a bacterial pathogen under plant immunity. Proceeding National Academy of Sciences USA. 27;115 (13): E3055-E3064. Doi: https://doi.org/10.1073/pnas.1800529115
Provart NJ, Brady SM, Parry G, Schmitz RJ, Queitsch C, Bonetta D, Waese J, Schneeberger K, Loraine AE. (2021). Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell. 31; 33 (4): 832-845. Doi: 10.1093/plcell/koaa038.
Poupin MJ, Ledger T, Roselló-Móra R, González B. (2023). The Arabidopsis holobiont: a (re) source of insights to understand the amazing world of plant-microbe interactions. Environmental Microbiome. 17; 18 (1): 9. Doi: 10.1186/s40793-023-00466-0.
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction Targeted Therapy. 25; 7 (1): 199. Doi: 10.1038/s41392-022-01056-1.
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K. (2019). Jasmonic Acid Signaling Pathway in Plants. International Journal of Molecular Sciences. 20; 20 (10):2479. Doi: 10.3390/ijms20102479.
 Safaeizadeh M. (2021). Endogenous peptide signals in Arabidopsis thaliana, their receptors, and their role in innate immunity. Journal of Plant Molecular Breeding. 9 (1): 1-11. Doi: https://doi.org/10.22058/jpmb.2022.526859.1227
Safaeizadeh M and Boller T. (2019). Differential and tissue-specific activation pattern of the AtPROPEP and AtPEPR genes in response to biotic and abiotic stress in Arabidopsis thaliana. plant signaling and behavior. 14 (5): e1590094. Doi: https://doi.org/10.1080/15592324.2019.1590094
Saijo Y, Loo EP, Yasuda S. (2018). Pattern recognition receptors and signaling in plant-microbe interactions. Plant Journal. 93: 592–613. Doi: https://doi.org/10.1111/tpj.13808 PMID: 29266555.
Schroeder MM, Lai Y, Shirai M, Alsalek N, Tsuchiya T, Roberts P, Eulgem T. (2019). A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina. Nature Scientific Report. 27; 9 (1): 20083. Doi: 10.1038/s41598-019-56401-2.
Saijo Y, Loo EP, Yasuda S. (2018). Pattern recognition receptors and signaling in plant-microbe interactions. Plant Journal. 93: 592–613. Doi: https://doi.org/10.1111/tpj.13808.
Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. (2019). Linking Autophagy to abiotic and biotic stress responses. Trends in Plant Sciences. 24 (5): 413-430. Doi: 10.1016/j.tplants.2019.02.001.
Solis-Ortiz CS, Gonzalez-Bernal J, Kido-Díaz HA, Peña-Uribe CA, López-Bucio JS, López-Bucio J, Guevara-García ÁA, García-Pineda E, Villegas J, Campos-García J, Reyes de La Cruz H. (2022). Bacterial cyclodipeptides elicit Arabidopsis thaliana immune responses reducing the pathogenic effects of Pseudomonas aeruginosa PAO1 strains on plant development. Journal of Plant Physiology. 275: 153738. Doi: 10.1016/j.jplph.2022.153738.
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. (2022) To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells. 17; 11 (24): 4105. Doi: 10.3390/cells11244105.
Tian H, Xu Y, Liu S, Jin D, Zhang J, Duan L, Tan W. (2017). Synthesis of Gibberellic acid derivatives and their effects on plant growth. Molecules. 26; 22 (5): 694. Doi: 10.3390/molecules22050694.
Torres MA, Jones JD, Dangl JL. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology. 141 (2):373-8. Doi: https://doi.org/10.1104/pp.106.079467.
Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M. (2007). Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates.  Proceedings of the National Academy of Sciences. 16; 104 (3): 1075-80. Doi: https://doi.org/10.1073/pnas.0605423104.
Xu H, Lantzouni O, Bruggink T, Benjamins R, Lanfermeijer F, Denby K, Schwechheimer C, Bassel GW. (2020). A Molecular signal integration network underpinning Arabidopsis seed germination. Current biology. 5; 30 (19): 3703-3712.e4. Doi: 10.1016/j.cub.2020.07.012.
Wang W, Withers J, Li H, Zwack PJ, Rusnac DV, Shi H, Liu L, Yan S, Hinds TR, Guttman M, Dong X, Zheng N. (2020). Structural basis of salicylic acid perception by Arabidopsis NPR proteins. Nature. 586 (7828): 311-316. Doi: 10.1038/s41586-020-2596-y.
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 15; 428(6984):7 64-7. Doi: https://doi.org/10.1038/nature02485.