Algal Diversity in Biological Soil Crusts of Qom Province, Iran: Insights into Microflora Composition and Environmental Impact

Document Type : Original Article

Authors

1 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran

2 Shahid Beheshti University

3 Professor, Faculty of Biological Sciences and Biotechnology, Shahid Beheshti University

4 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

 Today, the use of CO2 in microalgae cultures has increased for different purposes. Microalgae have the potential to produce high-value products along with CO2 fixation. Dunaliella is a twoflagellate green microalga. Besides lacking an indigestible cell wall, the relatively good quality protein and fatty acid make this alga an exceptional food in aquaculture and poultry fostering. In addition, there are many indigenous strains of algae with the advantage of adaptation to the regional climate condition. The main objective of this study was to evaluate the CO2 effect on the growth pattern and biochemical composition of Dunaliella sp. ABRIINW-I1 is native to Urmia Lake.
Results showed that using CO
2 in the culture not only affects the biomass concentration (1.06 g/l AFDW vs 0.54 g/l in the control experiment) and growth period (reaching the stationary phase in 7 days rather than 14 days in the control experiment); but also influences the chemical composition. It seems that during the cultivation time, the lipid content increased in the cost of carbohydrates (33.1%DW). Fatty acid analysis revealed an optimal combination of saturated and unsaturated acids with the dominance of C16 and C18 fatty acids. It seems that CO2 injection had no significant effect on the type of FA. The nutritional values of the studied strain were validated in this study, particularly when treated with CO2. The results demonstrated that utilizing CO2 in an algal culture could lead to decreased cost and energy requirements.

Keywords


Ahlesaadat M, Riahi H, Shariatmadari Z, Hakimi Meybodi MH. (2017). A taxonomic study of cyanobacteria in wheat fields adjacent to industrial areas in Yazd province (Iran). Rostaniha. 18 (2): 107-121. Doi: http://doi.org/10.22092/BOTANY.2018.115930.
Alghanmi HA and Jawad HM. (2019). Effect of environmental factors on cyanobacteria richness in some agricultural soils. Geomicrobiology Journal. 36 (1): 75-84. Doi: https://doi.org/10.1080/01490451.2018.1517196.
Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Elsevier.
Andreote APD, Vaz MGMV, Genuário DB, Barbiero L, Rezende-Filho AT, and Fiore MF. (2014). Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. Journal of phycology. 50: 675–684. Doi: https://doi.org/10.1111/jpy.12192.
Anower MR, Mott IW, Peel MD, Wu Y. (2013). Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiology and Biochemistry, 71: 103-111. Doi: https://doi.org/10.1016/j.plaphy.2013.06.026.
Ansari M, Shekari F, Mohammadi MH, Juhos K, Végvári G, Biró B. (2019). Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta physiologiae plantarum. 41: 1-13. Doi: https://doi.org/10.1007/s11738-019-2988-5.
Belnap J, Büdel B, Lange OL. (2001). Biological soil crusts: characteristics and distribution. Biological soil crusts: structure, function, and management. Springer International Publishing. 150: 3-30. Doi: https://doi.org/10.1007/978-3-642-56475-8_1.
Belnap J. (2003). The world at your feet: desert biological soil crusts. Frontiers in Ecology and the Environment. 1 (4): 181-189. Doi: https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2.
Büdel B, Dulić T, Darienko T, Rybalka N, Friedl T. (2016). Cyanobacteria and algae of biological soil crusts. Biological soil crusts: an organizing principle in drylands. 226: 55-80. Doi: https://doi.org/10.1007/978-3-319-30214-0_4.
Chamizo S, Belnap J, Eldridge DJ, Cantón Y, Malam Issa O. (2016). The role of biocrusts in arid land hydrology. Biological soil crusts: An organizing principle in drylands. 226: 321-346. Doi: https://doi.org/10.1007/978-3-319-30214-0_17.
Chaves MM, Flexas J, & Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany. 103(4): 551-560. Doi: https://doi.org/10.1093/aob/mcn125.
Davari M, Modaressi Z, Aghashariatmadari Z. (2018). Taxonomic Study on Cyanobacteria Species in Natural Habitats of Tanacetum parthenium Emphasising on Wollea and Cylindrospermum Morphological Characters. Plant, Algae, and Environment. 2 (2): 237-253.
Ebrahimivand A, Hooshyaripor F, Rajabi H. (2023). Assessment of development trend and land use change in Qom province using remote sensing technology. Water Resources. 16(57): 91-102. Doi: http://doi.org/10.30495/wej.2023.5831.
Eldridge DJ, Reed S, Travers SK, Bowker MA, Maestre FT, Ding J, Havrilla C, Rodriguez-Caballero E, Barger N, Weber B, Antoninka A, Belnap J, Chaudhary B, Faist A, Ferrenberg S, Huber-Sannwald E, Malam Issa O, Zhao Y. (2020). The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Global Change Biology. 26 (10): 6003-6014. Doi: https://doi.org/10.1111/gcb.1523.
Etemadi-Khah A, Pourbabaee AA, Alikhani HA, Noroozi M, Bruno L. (2017). Biodiversity of Isolated Cyanobacteria from Desert Soils in Iran. Geomicrobiology Journal. 34 (9):784-794. Doi: https://doi.org/10.1080/01490451.2016.1271064.
Foster L, Muhamadali H, Boothman C, Sigee D, Pittman JK, Goodacre R, Morris K and Lloyd JR (2020). Radiation tolerance of Pseudanabaena catenata, a cyanobacterium relevant to the first generation magnox storage pond. Frontiers in Microbiology. 11: 515. 486666. Doi: https://doi.org/10.3389/fmicb.2020.00515
Gao X, Xu H, Ye S, Liang W. (2016). A proposal on the restoration of Nostoc flagelliforme for sustainable improvement in the ecology of arid steppes in China. Environments. 3 (2): 14. Doi: https://doi.org/10.3390/environments3020014.
García-Carmona M, García-Orenes F, Arcenegui V, Mataix-Solera J. (2023). The Recovery of Mediterranean Soils After Post-Fire Management: The Role of Biocrusts and Soil Microbial Communities. Spanish Journal of Soil Science. 13: 11388. Doi: https://doi.org/10.3389/sjss.2023.11388.
Hakkoum Z, Minaoui F, Douma M, Mouhri K, Loudiki M. (2021). Impact of human disturbances on soil cyanobacteria diversity and distribution in suburban arid area of Marrakesh, Morocco. Ecological Processes. 10(1), 42. Doi: https://doi.org/10.1186/s13717-021-00303-7.
Heidari F, Shariatmadari Z, Riahi H. (2020). Screening of Extremophile Microalgae Isolated from High Background Radiation Areas as Source of Bioactive Materials. Current Bioactive Compounds. 16 (4): 407-414.  Doi: https://doi.org/10.2174/1573407215666181219104518.
Hokmolahi F, Riahi H, Soltani N, Shariatmadari Z, Hakimi Meibodi MH. (2017). A taxonomic study on non-heterocystous filamentous Cyanoprokaryotes from soil of yazd province, Iran. The Iranian Journal of Botany. 23 (1): 60-71. Doi: http://doi.org/10.22092/ijb.2017.109312.1147.
Irankhahi P, Riahi H, Shariatmadari Z, Aghashariatmadari Z. (2022). Diversity and distribution of heterocystous cyanobacteria across solar radiation gradient in terrestrial habitats of Iran. Rostanih. 23 (2): 264-281. Doi: 10.22092/BOT.J.IRAN.2023.360711.1336.
Joh G. (2014). The diverse species of the genus Hantzschia (Bacillariophyta) in sand flats of the Nakdong River estuary in Korea. Journal of Ecology and Environment. 37 (4): 245-255. Doi: https://doi.org/10.5141/ecoenv.2014.029.
Juo ASR. (1978). Selected methods for soil and plant analysis: IITA manual series, No. 1. Doi: https://hdl.handle.net/10568/97963.
Kirkwood AE and Henley WJ. (2006). Algal community dynamics and halotolerance in a terrestrial, hypersaline environment 1. Journal of phycology. 42 (3): 537-547. Doi: https://doi.org/10.1111/j.1529-8817.2006.00227.x.
Lan S, Wu L, Zhang D, Hu C, Liu Y. (2010). Effects of drought and salt stresses on man-made cyanobacterial crusts. European Journal of Soil Biology. 46 (6): 381-386. https://doi.org/10.1016/j.ejsobi.2010.08.002.
Li X, Hui R, Tan H, Zhao Y, Liu R, Song N. (2021). Biocrust research in China: recent progress and application in land degradation control. Frontiers in Plant Science. 12: 751521. Doi: https://doi.org/10.3389/fpls.2021.751521.
Maas EV and Hoffman GJ. (1977). Crop salt tolerance—current assessment. Journal of the irrigation and drainage division. 103(2): 115-134. Doi: https://doi.org/10.1061/JRCEA4.0001137.
Malam Issa O, Défarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, d’Acqui LP, Nordenberg S Annerman M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and soil. 290: 209-219. Doi: https://doi.org/10.1007/s11104-006-9153-9.
Malavasi V, Soru S, Cao G. (2020). Extremophile microalgae: the potential for biotechnological application. Journal of phycology. 56(3): 559-573.  Doi: https://doi.org/10.1111/jpy.12965.
Miralles I, Soria R, Lucas-Borja ME, Soriano M, Ortega R. (2020). Effect of biocrusts on bacterial community composition at different soil depths in Mediterranean semi-arid ecosystems. Science of the Total Environment. 733: 138613. Doi: https://doi.org/10.1016/j.scitotenv.2020.138613
Moghtaderi A, Taghavi M, Rezaei R. (2009). Cyanobacteria in biological soil crust of Chadormalu area, Bafq region in central Iran. Pakistan Journal of Nutrition. 8(7): 1083-1092.
Nguyen TCT, Khudzari JM, Imamura F, Sethi S, Iwamoto K. (2022, November). BSC (biological soil crust) Method for soil erosion control and vegetation recovery: Case studies in Japan. In IOP Conference Series: Earth and Environmental Science. 1091(1). Doi:  https://doi.org/10.1088/1755-1315/1091/1/012033.
Ouhsassi M, Khay EO, Bouyahya A, El Ouahrani A, Harsal AE, Abrini J. (2020). Evaluation of self-purifying power of cyanobacteria Pseudanabaena galeata: case of dairy factory effluents. Applied Water Science. 10: 181. Doi: https://doi.org/10.1007/s13201-020-01270-8.
Perera I, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. (2018). Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied microbiology and biotechnology. 102: 7351-7363. Doi: https://doi.org/10.1007/s00253-018-9192-1.
Rahim NAA, Merican FMMS, Radzi R, Omar WMW, Nor SAM, Broady P, Convey P. (2023). Unveiling the diversity of periphytic cyanobacteria (Cyanophyceae) from tropical mangroves in Penang, Malaysia. Tropical Life Sciences Research. 34 (3): 57. Doi: https://doi.org/10.21315/tlsr2023.34.3.4.
Rahmati Zadeh A, Jafari M, Karimian Eghbal M. (2014). Identifying saline lands and halophytes of Qom province. Iranian journal of range and desert research. 21 (4): 580-590. Doi: https://doi.org/10.22092/ijrdr.2016.13055.
Rangaswamy G. (1996). Agricultural microbiology. Asia Publishing House, Bombay. pages: 54–76.
Rechinger KH. (2005). Flora Iranica, vol. 1-176. Akademische Druck-u. Verlagsanstalt. Graz. Austria.
Righini H, Francioso O, Martel Quintana A, Roberti R. (2022). Cyanobacteria: a natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth. Horticulturae. 8 (1): 58. Doi: https://doi.org/10.3390/horticulturae8010058.
Roncero-Ramos B, Muñoz-Martín MA, Cantón Y, Chamizo S, Rodríguez-Caballero E, Mateo P. (2020). Land degradation effects on composition of pioneering soil communities: An alternative successional sequence for dryland cyanobacterial biocrusts. Soil Biology and Biochemistry. 146: 107824. Doi: https://doi.org/10.1016/j.soilbio.2020.107824
Rothschild LJ, and Mancinelli RL. (2001). Life in extreme environments. Nature. 409(6823): 1092-1101. Doi:  https://doi.org/10.1038/35059215.
Safarpour A, Amoozegar M A, Ventosa A. (2018). Hypersaline environments of Iran: Prokaryotic biodiversity and their potentials in microbial biotechnology. Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. 8: 265-298. Doi: https://doi.org/10.1007/978-981-13-0329-6_9.
Salehipour-Bavarsad F, Riahi H, Hejazi M A, Shariatmadari Z. (2022). Screening terrestrial and aquatic strains of Dunaliella from the eco-taxonomical perspective: a comparative study on fatty acid compositions as habitat indicators. Journal of Applied Phycology. 34: 461–474. Doi: https://doi.org/10.1007/s10811-021-02645-3.
Salehipour-Bavarsad F, Riahi H, Hejazi MA, Shariatmadari Z. (2021). Optimization of β-carotene production by an indigenous isolate of Dunaliella salina under salinity gradient stress. Iranian Journal of Fisheries Sciences. 21 (1): 235-246. Doi: 10.22092/ijfs.2022.125929.
Samylina OS, Kosyakova AI, Krylov AA, Sorokin DY, Pimenov NV. (2024). Salinity-induced succession of phototrophic communities in a southwestern Siberian soda lake during the solar activity cycle. Heliyon. 10(4). e26120. Doi: https://doi.org/10.1016/j.heliyon.2024.e26120.
Sepehr A, Hassanzadeh M, Rodriguez-Caballero E. (2019). The protective role of cyanobacteria on soil stability in two Aridisols in northeastern Iran. Geoderma Regional. 16: e00201. Doi: https://doi.org/10.1016/j.geodrs.2018.e00201.
Shahbaz M and Ashraf M. (2013). Improving salinity tolerance in cereals. Critical reviews in plant sciences. 32 (4): 237-249. Doi:  https://doi.org/10.1080/07352689.2013.758544.
Sikora FJ and Moore KP (2014). Soil test methods from the southeastern United States. Southern cooperative series bulletin. 419: 54-58.
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms. 8 (11): 1667. Doi: https://doi.org/10.3390/microorganisms8111667.
Szostek M, Szpunar-Krok E, Pawlak R, Stanek-Tarkowska J, Ilek A. (2022). Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy. 12 (1): 208. Doi: https://doi.org/10.3390/agronomy12010208.
Tashlykova NA and Afonina E Y. (2022). Diversity of plankton communities of chloride lakes of Southeastern Transbaikalia. In IOP Conference Series: Earth and Environmental Science. 1112 (1): 012108. IOP Publishing. Doi: http://doi:10.1088/1755-1315/1112/1/012108.
Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource technology. 184: 363-372. Doi: https://doi.org/10.1016/j.biortech.2014.11.040.
Verma V and Bhattacharjee MB. (2015). Growth and nitrate metabolism in the Thermohalophillic Cyanobacterium Leptolyngbya. Journal of Algal Biomass Util. 6: 68-75. ISSN: 2229 – 6905.
Willis A and Woodhouse JN. (2020). Defining cyanobacterial species: diversity and description through genomics. Critical Reviews in Plant Sciences. 39 (2): 101-124. Doi: https://doi.org/10.1080/07352689.2020.1763541.
Zafar AM, Javed MA, Hassan AA, Sahle-Demessie, E, Harmon S. (2022). Biodesalination using halophytic cyanobacterium Phormidium keutzingianum from brackish to the hypersaline water. Chemosphere. 307: 136082. Doi: https://doi.org/10.1016/j.chemosphere.2022.136082.