Aebi H. (1984). Catalase in vitro. Methods in Enzymology. 105: 121–126. Doi: https://doi.org/10.1016/s0076-6879(84)05016-3.
Alché JD. (2019). A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biology. 23: 101136. Doi: 10.1016/j.redox.2019.101136.
Alfaro-Quezada JF, Martínez JP, Molinett S, Valenzuela M, Montenegro I, Ramírez I, Dorta F, Ávila-Valdés A, Gharbi E, Zhou M, Dailly H, Quinet M, Lutts S, Seeger M. (2023). Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. Journal of Experimental Botany. 74 (9): 2891–2911. Doi: https://doi.org/10.1093/jxb/erad040.
Atkinson NJ and Urwin PE. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany. 63 (10): 3523–3543.
Barnaby A, Lam M, Scaman C, Clemens S, Kermode A. (2008). Screening of phenylalanine ammonia lyase in plant tissues, and retention of activity during dehydration. Journal of the Science of Food and Agriculture. 88: 619–625. Doi: https://doi.org/10.1002/jsfa.3126.
Beers EP and McDowell JM. (2001). Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Current Opinion in Plant Biology. 4 (6): 561–567.
Berwal MK and Ram C. (2018). Superoxide Dismutase: A Stable Biochemical Marker for Abiotic Stress Tolerance in Higher Plants (AB. de Oliveira (ed.); p. Ch. 7). Intech Open. Doi: https://doi.org/10.5772/intechopen.82079.
Beyer Jr WF and Fridovich I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry. 161 (2): 559–566. Doi: 10.1016/0003-2697(87)90489-1.
Bonfim MF, Denez L, Innocenti MD, Petry HB, Bruna, ED. (2023). Doses and intervals of application of potassium phosphite for the control of passion fruit scab. Revista Brasileira de Fruticultura. Doi: https://api.semanticscholar.org/CorpusID:261143281.
Cecchini, NM, Roychoudhry S, Speed DJ, Steffes K, Tambe A, Zodrow K, Konstantinoff K, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. (2019). Underground Azelaic Acid-Conferred Resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant-Microbe Interactions : MPMI, 32 (1); 86–94. Doi: https://doi.org/10.1094/MPMI-07-18-0185-R
Chang CC, Yang MH, Wen HM, Chern JC. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10 (3): 3.
de Fátima Pereira Silva P, de Resende MLV, Reichel T, de Lima Santos M, Dos Santos Botelho D M, Ferreira EB, Freitas NC. (2023). Potassium phosphite activates components associated with constitutive defense responses in coffea arabica cultivars. Molecular Biotechnology. 65 (11): 1777–1795. Doi: https://doi.org/10.1007/s12033-023-00683-5
Debnath D, Divya M, Golder S, Jamir I, Bhattacharjee T. (2019). Screening of different genotypes/crosses of tomato (Lycopersicon esculentum) for resistance to bacterial wilt (Ralstonia solanacearum) under field condition. Journal of Pharmacognosy and Phytochemistry. 8 (5): 174–177.
del Río LA, Sandalio LM, Altomare DA, Zilinskas BA. (2003). Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. Journal of Experimental Botany. 54 (384), 923–933. Doi: https://doi.org/10.1093/jxb/erg091.
dos Santos C and Franco OL. (2023). Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. In Plants. 12 (11). Doi: https://doi.org/10.3390/plants12112226.
Ferrer JL, Austin MB, Stewart Jr, C, Noel JP. (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry. 46 (3): 356–370. Doi: https://doi.org/10.1016/j.plaphy.2007.12.009.
Forman HJ, Maiorino M, Ursini F. (2010). Signaling functions of reactive oxygen species. Biochemistry. 49 (5), 835–842. Doi: https://doi.org/10.1021/bi9020378.
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences. 22 (17). Doi: https://doi.org/10.3390/ijms22179326
Hoagland DR and Arnon DI. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station. 347 (2nd edit).
Hu Z, Shao S, Zheng C, Sun Z, Shi J, Yu J, Qi Z, Shi K. (2018). Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta. 247 (5): 1217–1227. Doi: https://doi.org/10.1007/s00425-018-2860-7
Jain S, Varma A, Tuteja NK, Choudhary DK. (2016). Plant growth-promoting microbial-mediated induced systemic resistance in plants: induction, mechanism, and expression. Doi: https://api.semanticscholar.org/CorpusID:87185327
Janse van Rensburg HC, Takács Z, Freynschlag F, Toksoy Öner E, Jonak C, Van den Ende W. (2020). Fructans prime ROS dynamics and Botrytis cinerea resistance in Arabidopsis. Antioxidants. 9 (9): 805. Doi: https://doi.org/10.3390/antiox9090805.
Kumar N, Ebel RC, Roberts P D. (2011). H2O2 degradation is suppressed in kumquat leaves infected with Xanthomonas axonopodis pv. citri. Scientia Horticulturae. 130 (1): 241–247.
Lamers J, Van Der Meer T, Testerink C. (2020). How plants sense and respond to stressful environments. Plant Physiology. 182 (4): 1624–1635. Doi: https://doi.org/10.1104/pp.19.01464.
Liljeroth E, Lankinen Å, Wiik L, Burra DD, Alexandersson E, Andreasson E. (2016). Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protection, 86: 42–55. Doi: https://doi.org/10.1016/j.cropro.2016.04.003.
Luiz C, Neto ACR., Di Piero RM. (2015). Resistance to Xanthomonas gardneri in tomato leaves induced by polysaccharides from plant or microbial origin. Journal of Plant Pathology. 119–127.
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A. (2022). Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress. 5: 100103.
Mierziak J, Kostyn K, Kulma A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules. 19 (10): 16240–16265.
Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.
Mittler R. (2017). ROS are good. Trends in Plant Science, 22(1), 11–19.
Moghaieb REA, Ahmed DS, Gaber A, Abdelhadi AA. (2021). Overexpression of bacterial katE gene improves the resistance of modified tomato plant against
Fusarium oxysporum f. sp. l
ycopersici. GM Crops & Food. 12 (1): 315–327. Doi:
https://doi.org/10.1080/21645698.2021.1903374.
Morales M and Munné-Bosch S. (2019). Malondialdehyde: Facts and Artifacts. Plant Physiology. 180 (3): 1246–1250. Doi: https://doi.org/10.1104/pp.19.00405.
Nawaz M, Sun J, Shabbir S, Khattak WA, Ren G, Nie X, Bo Y, Javed Q, Du D, Sonne C. (2023). A review of plants strategies to resist biotic and abiotic environmental stressors. Science of the Total Environment. 165832. Doi:
https://doi.org/10.1016/j.scitotenv.2023.165832.
Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 95 (2): 351–358.
Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS. (2012). Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biology. 12 (1): 1–17.
Perez SM, Biondi E, Laurita R, Proto M, Sarti F, Gherardi M, Bertaccini A, Colombo V. (2019). Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PLOS One. 14 (5): e0217788.
Rabiei Z, Hosseini S, Dehestani A, Pirdashti H, Beiki F. (2022). Exogenous hexanoic acid induced primary defense responses in tomato (Solanum lycopersicum L.) plants infected with Alternaria solani. Scientia Horticulturae. 295: 110841. Doi: https://doi.org/https://doi.org/10.1016/j.scienta.2021.110841.
Rajput VD, Harish Singh RK., Verma KK., Sharma L, Quiroz-Figueroa, FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 10 (4):267. Doi: https://doi.org/10.3390/biology10040267.
Ramezani M, Rahmani F, Dehestani A. (2017). Study of physio-biochemical responses elicited by potassium phosphite in downy mildew-infected cucumber plants. Archives of Phytopathology and Plant Protection. 50: 540–554. Doi: https://api.semanticscholar.org/CorpusID:90791338.
Reglinski T, Havis N, Rees HJ, de Jong H. (2023). The practical role of induced resistance for crop protection. Phytopathology. 113 (4): 719–731. Doi: https://doi.org/10.1094/PHYTO-10-22-0400-IA.
Ritchie DF. (2000). Bacterial spot of pepper and tomato. The Plant Health Instructor, 10.
Rotich E and Mmbaga MT. (2023). Data on plant defense enzyme activity associated with three endophytes against Cornus florida Erysiphe pulchra powdery mildew. Data in Brief. 48: 109220. Doi: https://doi.org/https://doi.org/10.1016/j.dib.2023.109220
Sahu PK, Jayalakshmi K, Tilgam J, Gupta A, Nagaraju Y, Kumar A, Hamid S, Singh HV, Minkina T, Rajput VD, Rajawat MVS. (2022). ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes. In Frontiers in Plant Science. 13: 1042936. Doi: https://www.frontiersin.org/articles/10.3389/fpls.2022.1042936.
Schieber M and Chandel NS. (2014). ROS function in redox signaling and oxidative stress. Current Biology, CB. 24 (10): R453-62. Doi: https://doi.org/10.1016/j.cub.2014.03.034.
Shah A and Smith DL. (2020). Flavonoids in agriculture: Chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy. 10 (8): 1209. Doi: https://doi.org/10.3390/agronomy10081209.
Shoaib A, Awan ZA, Khan KA. (2019). Intervention of antagonistic bacteria as a potential inducer of disease resistance in tomato to mitigate early blight. Scientia Horticulturae. 252: 20–28. Doi: https://doi.org/https://doi.org/10.1016/j.scienta.2019.02.073
Shukla N, Yadav R, Kaur P, Rasmussen S, Goel S, Agarwal M, Jagannath A, Gupta R, Kumar A. (2018). Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Molecular Plant Pathology. 19 (3): 615-633. Doi: https://doi.org/10.1111/mpp.12547.
Silva BN, Picanço BBM, Hawerroth C, Silva LC, Rodrigues FÁ. (2022). Physiological and biochemical insights into induced resistance on tomato against septoria leaf spot by a phosphite combined with free amino acids. Physiological and Molecular Plant Pathology. 120: 101854. Doi:
https://doi.org/10.1016/j.pmpp.2022.101854.
Slopek SW. (1989). An improved method of estimating percent leaf area diseased using a 1 to 5 disease assessment scale. Canadian Journal of Plant Pathology. 11 (4): 381–387.
Soto-Caro A, Vallad GE, Xavier KV, Abrahamian P, Wu F, Guan Z. (2023). Managing bacterial spot of tomato: Do chemical controls pay off? Agronomy. 13 (4): 972. Doi: https://doi.org/10.3390/agronomy13040972.
Sun Y, Gui Z, Yan N, Wang Q, Zhang Z, Zhang H, Sun F, Han X, Du Y. (2023). Roles and preliminary mechanism of tobacco cis-abienol in inducing tomato resistance against bacterial wilt. International Journal of Molecular Sciences. 24 (15): 12226. Doi: https://doi.org/10.3390/ijms241512226.
Ullah A, Hussain A, Shaban M, Khan AH, Alariqi M, Gul S, Jun Z, Lin S, Li J, Jin S. (2018). Osmotin: a plant defense tool against biotic and abiotic stresses. Plant Physiology and Biochemistry. 123: 149–159.
Vanitha SC, Niranjana SR, Umesha S. (2009). Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology. 157 (9): 552–557. Doi: https://doi.org/10.1111/j.1439-0434.2008.01526.x
Velikova V, Yordanov I, Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science. 151 (1): 59–66.
Vogt T. (2010). Phenylpropanoid biosynthesis. Molecular Plant. 3 (1): 2–20.
Włodarczyk K, Smolińska B, Majak I. (2023). The antioxidant potential of tomato plants (Solanum lycopersicum L.) under nano-ZnO treatment. International Journal of Molecular Sciences. 24 (14): 11833. Doi: https://doi.org/10.3390/ijms241411833.
Yang T, Peng Q, Lin H, Xi D. (2023). Alpha-momorcharin preserves catalase activity to inhibit viral infection by disrupting the 2b-CAT interaction in Solanum lycopersicum. Molecular Plant Pathology. 24 (2): 107–122. Doi: https://doi.org/10.1111/mpp.13279.
Yang Z, Mhamdi A, Noctor G. (2019). Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length‐dependent oxidative signalling. Plant, Cell & Environment. 42
(2): 688–700. Doi:
https://doi.org/10.1111/pce.13453.
Yergaliyev TM, Nurbekova Z, Mukiyanova G, Akbassova A, Sutula M, Zhangazin S, Bari A, Tleukulova Z, Shamekova M, Masalimov ZK. (2016). The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiology and Biochemistry
. 109: 36–44. Doi:
https://doi.org/10.1016/j.plaphy.2016.09.001.
Zandi, P and Schnug E. (2022). Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology. 11 (2): 155. Doi: https://doi.org/10.3390/biology11020155.
Zhang Y, Ji TT, Li TT, Tian YY, Wang LF, Liu WC. (2020). Jasmonic acid promotes leaf senescence through MYC2-mediated repression of CATALASE2 expression in Arabidopsis. Plant Science. 299: 110604. Doi:
https://doi.org/10.1016/j.plantsci.2020.110604.
Zhang Y., Luan Q, Jiang J, Li Y. (2021). Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science. 12. Doi: https://www.frontiersin.org/articles/10.3389/fpls.2021.735275.
Zurbriggen MD, Carrillo N, Hajirezaei MR. (2010). ROS signaling in the hypersensitive response: when, where and what for? Plant Signaling & Behavior. 5
(4): 393–396. Doi:
https://doi.org/10.4161/psb.5.4.10793.