Molecular Docking of Secondary Metabolites of Marine Macroalgae Sargassum vulgare Against Exotoxin A

Document Type : Original Article

Authors

Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

Abstract

Sargassum is described as possessing biological metabolites that exhibit a range of activities including immuno-modulatory, analgesic, antioxidant, neuroprotective, anti-bacterial, anti-inflammatory, anti-tumor, and anti-viral activities to discover the antibacterial activity of the secondary metabolites of Sargassum vulgare by in silico approach. Samples were collected from the coastal zone of Boushehr, Persian Gulf. Species identification was performed by morphological and molecular analyses. The ethanolic and methanolic extracts of S. vulgare were subjected to GC-MS. The metabolites identified through GC-MS analysis were selected as ligands for interaction with the protein receptor in a molecular docking study using the PyRx software. Subsequently, nine ligands exhibiting high bind affinity and favorable interactions were assessed for their physicochemical, pharmacokinetic, and drug-likeness properties via the SwissADME web server. GC-MS analysis identified the presence total of 28 secondary metabolites comprising 16 ethanolic and 12 methanolic compounds. A docking study of these bioactive compounds showed their binding affinity and reactivity with the exotoxin A of Pseudomonas aeruginosa. Based on the ADME results, two compounds, Dioctyl Benzene-1, 2-Dicarboxylate, and Bis (6-Methylheptyl) Benzene-1, 2-Dicarboxylate, exhibited superior properties for drug targeting. The results suggested that the majority of compounds derived from S. vulgare extracts were effectively docked at the active site of exotoxin A of P.aeruginosa, Therefore, S. vulgare may serve as a sources of phytochemical metabolites with antibacterial properties, potentially mitigating the adverse effects associated with synthetic drugs. Further exploration into clinical applications is warranted.

Keywords


Abu Ahmed SE, Deyab MA, El-Ashry FS, El-Adl MF. (2021). Qualitative and Quantitative Phytochemical Composition of Sargassum vulgare at Hurghada Red Sea Coast-Egypt. Scientific Journal for Damietta Faculty of Science. 11 (1): 10-19. Doi:10.21608/SJDFS.2021.195585.
Adetayo MO and Anyasor GS. (2022). In Silico Investigation of Gastroprotective Compounds from n‐Butanol Fraction of Costus igneus on Antiulcer Druggable Targets. The FASEB Journal. 36. Doi:10.1096/fasebj.2022.36.S1.R3085.
Alreshidi M, Badraoui R, Adnan M, Patel M, Alotaibi A, Saeed M, Ghandourah M, Al-Motair KA, Arif IA, Albulaihed Y, Snoussi M. (2023). Phytochemical profiling, antibacterial, and antibiofilm activities of Sargassum sp.(brown algae) from the Red Sea: ADMET prediction and molecular docking analysis. Algal Research. 69: 102912. Doi:10.1096/fasebj.2022.36.S1.R3085.
Arguelles ED, Monsalud RG, Sapin AB. (2019). Chemical composition and in vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. J. Int. Soc. Southeast Asian Agric. Sci. 25: 112-122. Doi: www.ukdr.uplb.edu.ph/journal-articles/700.
Benet LZ, Hosey CM, Ursu O, Oprea TI. (2016). BDDCS, the Rule of 5, and drugability. Advanced drug delivery reviews. 101: 89-98. Doi:10.1016/j.addr.2016.05.007.
Bultum LE, Tolossa GB, Lee D. (2022). Combining empirical knowledge, in silico molecular docking, and ADMET profiling to identify therapeutic phytochemicals from Brucea antidysentrica for acute myeloid leukemia. Plos One. 17 (7): e0270050. Doi:10.1371/journal.pone.0270050.
Carroll SF and Collier RJ. (1987). Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. Journal of Biological Chemistry. 262 (18): 8707-8711. Doi:10.1016/S0021-9258(18)47472-8.
Cho CH, Lu YA, Kim MY, Jeon YJ, Lee SH. (2022). Therapeutic Potential of Seaweed-Derived Bioactive Compounds for Cardiovascular Disease Treatment. Applied Sciences. 12 (3): 1025. Doi:10.3390/app12031025.
Daina A, Michielin O, Zoete V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Scientific reports. 7 (1): 42717. Doi:10.1038/srep42717.
El-Sapagh S, El-Shenody R, Pereira L, Elshobary M. (2023). Unveiling the potential of algal extracts as promising antibacterial and antibiofilm agents against multidrug-resistant Pseudomonas Aeruginosa: in vitro and silico studies including molecular docking. Plants. 12 (18): 3324. Doi:10.3390/plants12183324.
Faisal al-hashdy D, El-Shaibany AM, Raweh SM, Humaid AA, El–Aasser MM. (2022). Preliminary phytochemical screening for various secondary metabolites, quantitative and qualitative analysis of Yemeni brown seaweed Sargassum vulgare. GSC Biological and Pharmaceutical Sciences. 20 (1): 298-313. Doi:10.30574/gscbps.2022.20.1.0294.
Gade AC, Murahari M, Pavadai P, Kumar MS. (2023). Virtual Screening of a Marine Natural Product database for In Silico identification of a potential Acetylcholinesterase inhibitor. Life, 13 (6): 1298.Doi:10.3390/life13061298.
Garg S, Anand A, Lamba Y, Roy A. (2020). Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor. Vegetos. 33 (4): 766-781. Doi:10.1007/s42535-020-00162-1.
Guiry MD, Guiry GM, Morrison L, Rindi F, Miranda SV, Mathieson AC, Parker BC, Langangen A, John DM, Bárbara I, Carter CF. (2014). AlgaeBase: an on-line resource for algae. Cryptogamie, Algologie. 35(2): 105-115. Doi:10.7872/crya.v35.iss2.2014.105.
Haddad M, Gaudreault R, Sasseville G, Nguyen PT, Wiebe H, Van De Ven T, Bourgault S, Mousseau N and Ramassamy C. (2022). Molecular interactions of tannic acid with proteins associated with SARS-CoV-2 infectivity. International journal of molecular sciences. 23(5): 2643. Doi:10.3390/ijms23052643.
Hernandez RD, Genio FA, Casanova JR, Conato MT, Paderes MC. (2024). Antiproliferative Activities and SwissADME Predictions of Physicochemical Properties of Carbonyl Group‐Modified Rotenone Analogues. Chemistry Open. 13 (1): e202300087. Doi:10.1002/open.202300087.
Jørgensen R, Wang Y, Visschedyk D, Merrill AR. (2008). The nature and character of the transition state for the ADP‐ribosyltransferase reaction. EMBO Reports. 9 (8): 802-809. Doi:10.1038/embor.2008.90.
Kothandan R, Rajan CA, Arjun J, Raj RR, Syed S. (2021). Virtual screening of phytochemical compounds as potential inhibitors against SARS-CoV-2 infection. Beni-Suef University Journal of basic and applied sciences. 10 (1): 1-7. Doi:10.1186/s43088-021-00095-x.
Liao W, Huang L, Han S, Hu D, Xu Y, Liu M, Yu Q, Huang S, Wei D, Li P. (2022). Review of medicinal plants and active pharmaceutical ingredients against aquatic pathogenic viruses. Viruses. 14(6): 1281. Doi:10.3390/v14061281.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 23 (1-3): 3-25. Doi:10.1016/S0169-409X(96)00423-1.
Liu PV. (1974). Extracellular toxins of Pseudomonas aeruginosa. Journal of Infectious Diseases. 130 (Supplement): S94-S99. Doi:10.1093/infdis/130.Supplement.S94.
Madushanka A, Moura Jr RT, Verma N, Kraka E. (2023). Quantum mechanical assessment of protein–ligand hydrogen bond strength patterns: insights from semiempirical tight-binding and local vibrational mode theory. International Journal of Molecular Sciences. 24 (7): 6311. Doi: 10.3390/ijms24076311.
Miandad K, Ullah A, Bashir K, Khan S, Abideen SA, Shaker B, Alharbi M, Alshammari A, Ali M, Haleem A, Ahmad S. (2022). Virtual Screening of Artemisia annua phytochemicals as Potential Inhibitors of SARS-CoV-2 main protease nzyme. Molecules. 27(22): 8103. Doi:10.3390/molecules27228103.
Milusheva M, Gledacheva V, Stefanova I, Nikolova S. (2023). 1-(2-Chlorophenyl)-6, 7-dimethoxy-3-methyl-3, 4-dihydroisoquinoline. Molbank. 2023 (2): M1608. Doi:10.3390/M1608.
Mishra A, Dey S. (2019). Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules. 9 (11): 740. Doi: 10.3390/biom9110740.
Mohammed HA, Almahmoud SA, Arfeen M, Srivastava A, El-Readi MZ, Ragab EA, Shehata SM, Mohammed SA, Mostafa EM, El-khawaga HA, Khan RA. (2022). Phytochemical profiling, molecular docking, and in vitro anti-hepatocellular carcinoid bioactivity of Suaeda vermiculata extracts. Arabian Journal of Chemistry. 15 (7): 103950. Doi:10.1016/j.arabjc.2022.103950.
Odoemelam CS, Hunter E, Simms J, Ahmad Z, Chang MW, Percival B, Williams IH, Molinari M, Kamerlin SC, Wilson PB. (2022). In Silico Ligand Docking Approaches to Characterise the Binding of Known Allosteric Modulators to the Glucagon-Like Peptide 1 Receptor and Prediction of ADME/Tox Properties. Applied Biosciences. 1(2): 143-162. Doi:10.3390/applbiosci1020010.
Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface lead the pathways of drug-designing. PLoS One. 5 (8): e12029. Doi:10.1371/journal.pone.0012029.
Prasanth R, Suresh Kumar P. (2020). Molecular docking and statistical assessment of macroalgae Halimeda species against marine macro fouler Mytilus galvoprovinces (4CN8). Int. Journal Pharmaceutical Sciences Review Research. 60: 40-47.
Praveen AS, Vinitha S, Vinayalekshmi VS, Ramya P, Vanavil B. (2023). Seaweed metabolites for targeting pel polysaccharide biosynthesis in Pseudomonas aeruginosa–A novel strategy for biofilm control. Current Trends in Biotechnology and Pharmacy. 17 (3B): 1316-1326. Doi:10.5530/ctbp.2023.3s.66.
Rajkumar G, Bhavan PS, Suganya M, Srinivasan V, Karthik M, Udayasuriyan R. (2018). Phytochemical characterization of marine macro alga Sargassum polycystem, molecular docking, and in vitro anti-bacterial activity against Psuedomonas aeruginosa. International biological and biomedical journal. 4(1): 35-47. Doi:ibbj.org/article-1-160-en.html.
Silva A, Silva SA, Carpena M, Garcia-Oliveira P, Gullón P, Barroso MF, Prieto MA, Simal-Gandara J. (2020). Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics. 9 (10): 642. Doi: 10.3390/antibiotics9100642.
Skoraczyński G, Kitlas M, Miasojedow B, Gambin A. (2023). Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning. Journal of Cheminformatics. 15(1): 6. Doi:10.1186/s13321-023-00678-z.
Teibo JO, Bello SA, Adebisi OA, Olugbami JO, Ayandeyi TK. (2021). Anti-diabetic drug discovery using bioactive compounds: Molecular docking insights. GSC Biological and Pharmaceutical Sciences. 14(3): 175-178. Doi:10.30574/gscbps.2021.14.3.0048.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry. 45 (12): 2615-2623. Doi:10.1021/jm020017n.
Wedekind JE, Trame CB, Dorywalska M, Koehl P, Raschke TM, McKee M, FitzGerald D, Collier RJ, McKay DB. (2001). Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. Journal of Molecular Biology. 314 (4): 823-837. Doi:10.1006/jmbi.2001.5195.