Climate Change May Treat Table Grape (Vitis vinifera subsp. vinifera Hegi) Cultivation and Industry: Niche Modeling and Comparative Phylogenetic Analyses

Document Type : Original Article

Authors

1 Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

2 Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.

10.48308/pae.2025.237743.1095

Abstract

Grape (Vitis vinifera subsp. vinifera Hegi) cultivation and its related industry are important sources of income for several regions and countries worldwide. Table grape gains its popularity because of the economic significance of this plant. Global warming and climate change are widely recognized as significant challenges in the 21st century, posing a substantial threat to various aspects of the world. One area in which these phenomena may greatly impact is grape production across different regions. Grape is cultivated in several parts of Iran, ranging from northwest to northeast and southern regions. The present study was performed to predict grape cultivation areas in the present time and future climate changeably in the year 2050. Such studies can provide a clear vision of future cultivation and help us to plan conservation strategies for grape cultivation. We used a combination of different species distribution modeling as well as comparative phylogeny analyses for the present study.  Maxent, Dismo, and general linear model analyses of grape plant occurrence showed potential areas of grape cultivation at present and indicated a significant reduction in such areas by the year 2050. The model's result indicated the importance of precipitation and temperature for grape future cultivation. We identified genetic loci with adaptive potentials to climate change, which may be used in conservation and crossing among grape cultivars. The present findings are discussed along with our previous population genetics and landscape genetic studies of the same grape cultivars and suggestions are provided for the conservation of these plants.
 

Keywords


A. Lee‐Yaw, J., L. McCune, J., Pironon, S. and N. Sheth, S., 2022. Species distribution models rarely predict the biology of real populations. Ecography, 2022(6), p.e05877. DOI: https://doi.org/10.1111/ecog.05877
Andrew, R.L., Ostevik, K.L., Ebert, D.P. and Rieseberg, L.H., 2012. Adaptation with gene flow across the landscape in a dune sunflower. Molecular ecology, 21(9), pp.2078-2091. DOI:
https://doi.org/10.1111/j.1365-294X.2012.05454.x
Avise, J.C., 2000. Phylogeography: the history and formation of species. Harvard University Press. DOI: https://doi.org/10.1093/icb/41.1.134
Blomberg, S.P., Garland Jr, T. and Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), pp.717-745. DOI: https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Booth, T.H., Nix, H.A., Busby, J.R. and Hutchinson, M.F., 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and distributions, 20(1), pp.1-9. DOI: https://doi.org/10.1111/ddi.12144
Coupel-Ledru, A., Lebon, É., Christophe, A., Doligez, A., Cabrera-Bosquet, L., Péchier, P., Hamard, P., This, P. and Simonneau, T., 2014. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache× Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Journal of Experimental Botany, 65(21), pp.6205-6218. DOI: https://doi.org/10.1093/jxb/eru228
Crespan, M., 2004. Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theoretical and Applied Genetics, 108(2), pp.231-237. DOI: https://doi.org/10.1007/s00122-003-1419-5
Duchêne, E., 2016. How can grapevine genetics contribute to the adaptation to climate change?. Oeno One, 50(3), pp.113-124. DOI: https://doi.org/10.20870/oeno-one.2016.50.3.98
Ekhvaia, J. and Akhalkatsi, M., 2010. Morphological variation and relationships of Georgian populations of Vitis vinifera L. subsp. sylvestris (CC Gmel.) Hegi. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(9), pp.608-617. DOI: https://doi.org/10.1016/j.flora.2009.08.002
Elith, J., Graham, C.H., Anderson, R.P., Dudık, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A. and Li, J., 2006. Townsend Peterson, Steven J. Phillips, Karen Richardson, Ricardo Scachetti-Pereira, Robert E. Schapire, Jorge Soberón, Stephen Williams, Mary S. Wisz, and Niklaus E. Zimmermann. Novel methods improve prediction of species’ distribution from occurrence data. Ecography, 29(2), pp.129-151. DOI: https://doi.org/10.1111/j.2006.0906-7590.04596.x
Elith, J. and Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40(1), pp.677-697. DOI: https://doi.org/10.1146/annurev.ecolsys.110308.120159.
Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., Myles, S., Martinez-Zapater, J.M., Zyprian, E., Moreira, F.M. and Grando, M.S., 2013. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13, pp.1-17. DOI: https://doi.org/10.1186/1471-2229-13-39.
Frichot, E., Schoville, S.D., Bouchard, G. and François, O., 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular biology and evolution, 30(7), pp.1687-1699. DOI: https://doi.org/10.1093/molbev/mst063.
GGoufo, P., Singh, R.K. and Cortez, I., 2020. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants, 9(5), p.398. DOI: https://doi.org/10.3390/antiox9050398.
Guan, B., Gao, J., Chen, W., Gong, X. and Ge, G., 2021. The effects of climate change on landscape connectivity and genetic clusters in a small subtropical and warm-temperate tree. Frontiers in Plant Science, 12, p.671336. DOI: https://doi.org/10.3389/fpls.2021.671336.
Guisan, A. and Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), pp.993-1009. DOI: https://doi.org/10.1111/j.1461-0248.2005.00792.x..
Hijmans, R.J. and Graham, C.H., 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biology, 12(12), pp.2272-2281. DOI: https://doi.org/10.1111/j.1365-2486.2006.01256.x.
HHinojos Mendoza, G., Gutierrez Ramos, C.A., Heredia Corral, D.M., Soto Cruz, R. and Garbolino, E., 2020. Assessing suitable areas of common grapevine (Vitis vinifera L.) for current and future climate situations: The CDS Toolbox SDM. Atmosphere, 11(11), p.1201. DOI: https://doi.org/10.3390/atmos11111201.
Kearney, M. and Porter, W., 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology letters, 12(4), pp.334-350. DOI:
https://doi.org/10.1111/j.1461-0248.2008.01277.x.
KRIŽMAN, M., Jakše, J., Baričevič, D., Javornik, B. and Prošek, M., 2006. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agriculturae Slovenica, 87(2), pp.427-433. DOI: https://doi.org/10.14720/aas.2006.87.2.15122.
McIntyre, N.E., Wright, C.K., Swain, S., Hayhoe, K., Liu, G., Schwartz, F.W. and Henebry, G.M., 2014. Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 12(1), pp.59-64. DOI: https://doi.org/10.1890/120369.
NNaqinezhad, A., Ramezani, E., Djamali, M., Schnitzler, A. and Arnold, C., 2018. Wild grapevine (Vitis vinifera subsp. sylvestris) in the Hyrcanian relict forests of northern Iran: an overview of current taxonomy, ecology and palaeorecords. Journal of Forestry Research, 29, pp.1757-1768. DOI: https://doi.org/10.1007/s11676-017-0549-6.
Nosil, P., Egan, S.P. and Funk, D.J., 2008. Heterogeneous genomic differentiation between walking-stick ecotypes:“isolation by adaptation” and multiple roles for divergent selection. Evolution, 62(2), pp.316-336. DOI: https://doi.org/10.1111/j.1558-5646.2007.00299.x.
Ortego, J., Riordan, E.C., Gugger, P.F. and Sork, V.L., 2012. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology, 21(13), pp.3210-3223. DOI: https://doi.org/10.1111/j.1365-294X.2012.05591.x.
Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature, 401(6756), pp.877-884..
Parihar, S. and Sharma, D., 2021. A brief overview on Vitis Vinifera. Sch Acad J Pharm, 12(12), pp.231-9. DOI: 10.36347/sajp.2021.v10i12.005.
Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), pp.231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Poelchau, M.F. and Hamrick, J.L., 2012. Differential effects of landscape‐level environmental features on genetic structure in three codistributed tree species in C entral A merica. Molecular Ecology, 21(20), pp.4970-4982. DOI: https://doi.org/10.1111/j.1365-294X.2012.05755.x.
Rehfeldt, G.E., Tchebakova, N.M., Parfenova, Y.I., Wykoff, W.R., Kuzmina, N.A. and Milyutin, L.I., 2002. Intraspecific responses to climate in Pinus sylvestris. Global Change Biology, 8(9), pp.912-929. DOI: https://doi.org/10.1046/j.1365-2486.2002.00516.x.
Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in ecology and evolution, (2), pp.217-223. DOI: 10.1111/j.2041-210X.2011.00169.x.
Riordan, E.C., Gugger, P.F., Ortego, J., Smith, C., Gaddis, K., Thompson, P. and Sork, V.L., 2016. Association of genetic and phenotypic variability with geography and climate in three southern California oaks. American journal of botany, 103(1), pp.73-85. DOI: https://doi.org/10.3732/ajb.1500135.
Soularue, J.P. and Kremer, A., 2014. Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection. Heredity, 113(6), pp.485-494. DOI: https://doi.org/10.1038/hdy.2014.51.
Tardieu, F., 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant Science, 8(1), pp.9-14. DOI: 10.1016/s1360-1385(02)00008-0.
Taskesenlioglu, M.Y., Ercisli, S., Kupe, M. and Ercisli, N., 2022. History of grape in Anatolia and historical sustainable grape production in Erzincan agroecological conditions in Turkey. Sustainability, 14(3), p.1496. DOI: https://doi.org/10.3390/su14031496.
This, P., Jung, A., Boccacci, P., Borrego, J., Costantini, L., Crespan, M., Eisenheld, C., Grando, M.S., Lacombe, T., Lacou, V. and Meredith, C.P., 2004. Development of a common set of standard varieties and standardized method of scoring microsatellites markers for the analysis of grapevine genetic resources. Theoretical and Applied Genetics, 109, pp.1448-1458. DOI: 10.1007/s00122-004-1760-3.
Wang, I.J. and Bradburd, G.S., 2014. Isolation by environment. Molecular ecology, 23(23), pp.5649-5662. DOI: https://doi.org/10.1111/mec.12938.
Woodward, F.I., 1987. Climate and plant distribution. Cambridge University Press. DOI: https://doi.org/10.1007/BF00038700.