Marine Algae Extract Effects on Cell Proliferation in a Malignant Melanoma Cell Line and an Immortalized Fibroblast Cell Line

Document Type : Original Article

Authors

1 International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization, P. O. BOX.41635-3464, Rasht, Iran.

2 Laboratory of Biotechnology, Clean Nature Explorer (CNE) Company, Rasht, Iran

3 Department of Biology, University of Washington, Box 355325, Seattle, WA, USA

Abstract

Microalgae are currently used as an important source of valuable natural biologically active molecules in cancer research. The effect of the fractions of Gracilaria salicornia, Padina boergesenii, and Polycladia myrica was evaluated on human melanoma. Cell proliferation and viability were assessed in human malignant melanoma cell lines (A375) and immortalized human foreskin fibroblast (Hu02-KP) through applying ELISA and MTT assays. Seaweed samples were collected from the Persian Gulf (55' 57˚E and 26' 56˚N) at the intertidal zone of Qeshm island coast, Iran. The samples were extracted with EtOH from fresh algae and separated on a chromatography column. A total of 14 fractions were extracted, G. salicornia (G1, G2, G3), P. myrica (F1, F2, F3, F4), and P. boergoseni (P1, P2, P3, P4). 22 components were detected in the fractions by GC-MS. The survival of all fractions (after completely removing EtOH from fractions) was assayed on A375 and Hu02-KP cell lines. The survival of melanoma cell A375 was determined 41-58% in the fraction of G3, G. salicornia, although no significant toxicity was observed on fibroblast Hu02-KP. Furthermore, the fraction P3 of P. boergesenii had more than 85% mortality in melanoma cell line A375 and no significant toxicity was observed on fibroblast Hu02-KP. Finally, 1, 2-benzenedicarboxylic acid, diisooctyl ester and hexadecanoic acid, methyl ester was respectively detected as the most abundant components in P. boergoseni and G. salicornia. In conclusion, Algae have the potential to extract complex substances that may be beneficial in healthcare; however, additional research is needed to confirm the efficacy and safety of algae-derived compounds for cancer treatment.

Keywords


Altuner, E.M., Çeter, T., Gür, M., Güney, K., Kıran, B., Akwıeten, H.E. and Soulman, S.İ., 2018. Chemical composition and antimicrobial activities of cold-pressed oils obtained from nettle, radish and pomegranate seeds. Kastamonu University Journal of Forestry Faculty, 18(3), pp. 236-247. doi:10.17475/kastorman.498413.
Álvarez-Gómez, F., Korbee, N., Casas-Arrojo, V., Abdala-Díaz, R.T. and Figueroa, F.L., 2019. UV photoprotection, cytotoxicity, and immunology capacity of red algae extracts. Molecules, 24(2), p.341. doi.org/10.3390/molecules24020341.
Begum, S.F.M. and Hemalatha, S., 2020. Phytoconstituents from Gelidiella acerosa induce apoptosis by regulating Bax, Bcl2 expression in A549 cells. Biocatalysis and Agricultural Biotechnology29, p.101757. doi.org/10.1016/j.bcab.2020.101757.
Bergé, J.P., Debiton, E., Dumay, J., Durand, P. and Barthomeuf, C., 2002. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium cruentum. Journal of Agricultural and Food Chemistry, 50(21), pp.6227-6232. doi: 10.1021/jf020290y.
Beulah, G.G., Soris, P.T. and Mohan, V.R., 2018. GC-MS determination of bioactive compounds of Dendrophthoe falcata (LF) Ettingsh: An epiphytic plant. International Journal of Health Science Research, 8, pp.261-269.
de Sousa Andrade, L.N., De Lima, T.M., Curi, R. and de Lauro Castrucci, A.M., 2005. Toxicity of fatty acids on murine and human melanoma cell lines. Toxicology in vitro, 19(4), pp.553-560. doi.org/10.1016/j.tiv.2005.02.002.
El Baz, F.K., El Baroty, G.S., Abd El Baky, H.H., Abd El-Salam, O.I. and Ibrahim, E.A., 2013. Structural characterization and biological activity of sulfolipids from selected marine algae. Grasas y aceites, 64(5), pp.561-571. doi: 10.3989/gya.050213.
El-Din, S.M.M. and El-Ahwany, A.M., 2016. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). Journal of Taibah University for Science, 10(4), pp.471-484. doi: org/10.1016/j.jtusci.2015.06.004.
Güven, K.C., Percot, A. and Sezik, E., 2010. Alkaloids in marine algae. Marine Drugs, 8(2), pp.269-284. doi.org/10.3390/md8020269.
Horrobin, D.F. and Ziboh, V.A., 1997. The importance of linoleic acid metabolites in cancer metastasis and in the synthesis and actions of 13-HODE. Recent Advances in Prostaglandin, Thromboxane, and Leukotriene Research, pp.291-294.
Isbilen, O., Rizaner, N. and Volkan, E., 2018. Anti-proliferative and cytotoxic activities of Allium autumnale PH Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231. BMC Complementary and Alternative Medicine, 18, pp.1-13. doi: 10.1186/s12906-018-2105-0
Kachhap, S.K., Dange, P. and Ghosh, S.N., 2000. Effect of ω-6 polyunsaturated fatty acid (linoleic acid) on BRCA1 gene expression in MCF-7 cell line. Cancer Letters, 154(2), pp.115-120. doi.org/10.1016/S0304-3835(00)00371-2.
Kim, J.H., Lee, J.E., Kim, K.H. and Kang, N.J., 2018. Beneficial effects of marine algae-derived carbohydrates for skin health. Marine Drugs, 16(11), p.459. doi:10.3390/md16110459
Krishnan, K., Mani, A. and Jasmine, S., 2014. Cytotoxic activity of bioactive compound 1, 2-benzene dicarboxylic acid, mono 2-ethylhexyl ester extracted from a marine-derived Streptomyces sp. VITSJK8. International journal of Molecular and Cellular Medicine, 3(4), p. 246-254.
Lichota, A. and Gwozdzinski, K., 2018. Anticancer activity of natural compounds from plant and marine environments. International Journal of Molecular Sciences, 19(11), p.3533. doi.org/10.3390/ijms19113533.
Lu, X., Yu, H., Ma, Q., Shen, S. and Das, U.N., 2010. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids in Health and Disease, 9, pp.1-11.
Maher, S., Kumeria, T., Wang, Y., Kaur, G., Fathalla, D., Fetih, G., Santos, A., Habib, F., Evdokiou, A. and Losic, D., 2016. From the mine to cancer therapy: natural and biodegradable theranostic silicon nanocarriers from diatoms for sustained delivery of chemotherapeutics. Advanced Healthcare Materials, 5(20), pp.2667-2678. doi:10.1002/adhm.201600688.
Maggiora, M., Bologna, M., Cerù, M.P., Possati, L., Angelucci, A., Cimini, A., Miglietta, A., Bozzo, F., Margiotta, C., Muzio, G. and Canuto, R.A., 2004. An overview of the effect of linoleic and conjugated‐linoleic acids on the growth of several human tumor cell lines. International Journal of Cancer, 112 (6), pp.909-919. doi.org/10.1002/ijc.20519.
McCabe, T., Clardy, J., Minale, L., Pizza, C., Zollo, F. and Riccio, R., 1982. A triterpenoid pigment with the isomalabaricane skeleton from the marine sponge Stelletta sp. Tetrahedron Letters, 23(33), pp.3307-3310. doi.org/10.1016/S0040-4039(00)87601-7.
McGaw, L.J., Jäger, A.K. and Van Staden, J., 2002. Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia, 73(5), pp.431-433. doi.org/10.1016/S0367-326X(02)00120-X.
Meragelman, K.M., McKee, T.C. and Boyd, M.R., 2001. New cytotoxic isomalabaricane triterpenes from the sponge Jaspis species. Journal of natural products, 64(3), pp.389-392.
Ning, M.S. and Andl, T., 2013. Control by a hair’s breadth: the role of microRNAs in the skin. Cellular and Molecular Life Sciences, 70, pp.1149-1169.
Ramezanpour, Z., Ghanbari Pirbasti, F. and Rasouli Dogaheh, S., 2021. Bioactivity potential of Gracilaria salicornia, Padina boergesenii, Polycladia myrica: antibacterial, antioxidant and total phenol assays. Plant, Algae, and Environment, 5(1), pp.597-615. doi:  10.48308/jpr.2021.220667.1004.
Save, S.A., Lokhande, R.S. and Chowdhary, A.S., 2015. Determination of 1, 2-Benzenedicarboxylic acid, bis (2-ethylhexyl) ester from the twigs of Thevetia peruviana as a Colwell Biomarker. Journal of Innovations in Pharmaceuticals and Biological Sciences, 2(3), pp. 349-362.
Segura, M.F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., Zakrzewski, J., Blochin, E., Rose, A., Bogunovic, D. and Polsky, D., 2009. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences, 106(6), pp.1814-1819.
Simpi, C.C., Nagathan, C.V., Karajgi, S.R. and Kalyane, N.V., 2013. Evaluation of marine brown algae Sargassum ilicifolium extract for analgesic and anti-inflammatory activity. Pharmacognosy research, 5(3), p.146 –149. doi:10.4103/0974-8490.112413.
Sithranga Boopathy, N. and Kathiresan, K.J.J.O., 2010. Anticancer drugs from marine flora: An overview. Journal of oncology, 2010(1), p.214186. doi./org/10.1155/2010/214186.
Teas, J. and Irhimeh, M.R., 2017. Melanoma and brown seaweed: an integrative hypothesis. Journal of applied phycology, 29(2), pp.941-948. doi. 10.1007/s10811-016-0979-0.
Tohme, R., Darwiche, N. and Gali-Muhtasib, H., 2011. A journey under the sea: The quest for marine anti-cancer alkaloids. Molecules, 16(11), pp.9665-9696.  doi.org/10.3390/molecules16119665.
Vega, J., Bonomi-Barufi, J., Gómez-Pinchetti, J.L. and Figueroa, F.L., 2020. Cyanobacteria and red macroalgae as potential sources of antioxidants and UV radiation-absorbing compounds for cosmeceutical applications. Marine Drugs, 18(12), p.659. doi.org/10.3390/md18120659.
Wang, D.H. and Tao, W.Y., 2009. Antitumor activity in vitro and volatile components of metabolites from myxobacteria Stigmatella WXNXJ-B. African Journal of Microbiology Research, 3(11), pp.755-760.
Wani, H.M.U.D., Chen, C.W., Huang, C.Y., Singhania, R.R., Sung, Y.J., Dong, C.D. and Patel, A.K., 2023. Development of bioactive peptides derived from red algae for dermal care applications: recent advances. Sustainability, 15(11), p.8506. doi.org/10.3390/su15118506.
Xin, Z., Zhang, M., Cui, H., Ding, X., Zhang, T., Wu, L., Cui, H., Xue, Q., Chen, C. and Gao, J., 2023. Algae: A robust living material against cancer. International Journal of Nanomedicine, pp.5243-5264.
Xu, Y. and Qian, S.Y., 2014. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomedical Journal, 37(3), p.112–119. doi: 10.4103/2319-4170.131378.