AOAC, 1995. Official methods of analysis of AOAC International. 16th ed. Vol. 2. Association of Analytical Communities, USA.
Cohen, Z., 1997. The chemicals of Spirulina. In: A. Vonshak, ed. Spirulina platensis (A. platensis): Physiology, Cell Biology and Biotechnology. Taylor and Francis, London, pp. 175-204.
Colla, L.M., Reinehr, C.O., Carolina, R. and Jorge, A.V.C., 2007. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), pp. 1489-1493. DOI: https://doi.org/10.1016/j. biortech.2006.06.033.
Coutteau, P. and Sorgeloos, P., 1992. The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. Journal of Shellfish Research, 11, pp. 467-476.
Danesi, E.D.G., Rangel-Yagui, C.O., Sato, S. and de Carvalho, J.C.M., 2011. Growth and content of Spirulina platensis biomass and chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology, 42(1), pp. 362-373. https://doi.org/10.1590/S1517-83822011000100054.
Fernandez-Reiriz, M.J., Perez-Camacho, A. and Ferreiro, M.J., 1989. Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipid and fatty acids) of seven marine microalgae. Aquaculture, 83, pp. 17-37. DOI: https://doi.org/10.1016/0044-8486(89)90005-1
Guillard, R.R.L. and Ryther, J.H., 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 18, pp. 229–239. https://doi.org/10.1139/m62-029
Göksan, T., Zekerüyaoúlu, A. and Ülknur, A.K., 2007. The growth of Spirulina platensis in different culture systems under greenhouse conditions. Turkish Journal of Biology, 31, pp. 47-52.
Jime´nez, C., Cossı´o, B.R., Labella, D. and Niell, F.X., 2003. The feasibility of industrial production of Spirulina (A. platensis) in Southern Spain. Aquaculture, 217, pp. 179-190. DOI: https://doi.org/10.1016/S0044-8486(02)00262-6.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, pp. 265–275. DOI: https://doi.org/10.1016/S0021-9258(18)64850-0.
Madkour, F.F., Kamil, A. and Nasr, H.S., 2012. Production and nutritive value of Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research, 38, pp. 51-57. DOI: https://doi.org/10.1016/j.ejar.2012.07.001.
Oliveira, M.A.C.L., Monteiro, M.P.C., Robbs, P.G. and Leite, S.G.F., 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 7, pp. 261-275. DOI: https://doi.org/10.1023/A: 1009248303316.
Richmond, A., 1992. In: N.H. Mann & N.G. Carr, eds. Photosynthetic Prokaryotes. Plenum Press, New York, pp. 181-209.
Pandey, J.P. and Tiwari, A., 2010. Optimization of biomass production of Spirulina maxima. Journal of Algal Biomass Utilization, 1(2), pp. 20-32. DOI: https://doi.org/10.1016/j.jalbi. 2010.11.002.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis–Cassan, C., Isambert, A. and Raherimandimby, M., 2011. Improvement of the growth of A. platensis (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food Bioproduction and Processing, 89(3), pp. 209-216. DOI: https://doi.org/10.1016/j.fbp. 2010.05.001
Rodrigues, M.S., Ferreira, L.S., Converti, A. and Sato, S., 2011. Influence of ammonia sulphate feeding time on fed-batch A. platensis (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresource Technology, 102, pp. 6587-6592. DOI: https://doi.org/10.1016/j.biortech.2011.03.091
Sarada, R., Pillai, M.G. and Ravishankar, G.A., 1998. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods, and stability studies on phycocyanin. Process Biochemistry, 34, pp. 795-801. DOI: https://doi.org/10.1016/S0032-9592(98)00005-5
Sasson, A., 1997. Micro Biotechnologies: Recent Developments and Prospects for Developing Countries. BIOTEC Publication 1/2542, pp. 11–31. Place de Fontenoy, Paris. France. United Nations Educational, Scientific and Cultural Organization (UNESCO).
Spolaore, P., Joannis-Cassan, C., Duran, E. and Esambert, A., 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), pp. 87-96. DOI: https://doi.org/10.1263/jbb.101.87
Strickland, J.D.H. and Parsons, T.R., 1989. Discussion of spectrophotometric determination of marine plant pigments with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Research, 21, pp. 155–163.
Uslu, L., Işik, O., Koç, K. and Göksan, T., 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3), pp. 386-389. https://doi.org/10.5897/AJB10.1374.
Yuan, X., Kumar, A., Sahu, A.K. and Ergas, S.J., 2011. Impact of ammonia concentration on Spirulina platensis growth in an air-lift photobioreactor. Bioresource Technology, 102(3), pp. 3234-3239. https://doi.org/10.1016/j.biortech.2010.11.061.
Waterborg, J.H., 2002. The Lowry method for protein quantitation. In: J.M. Walker, ed. The Protein Protocols Handbook. 1st ed. Humana Press, Totowa, pp. 7–9.