Effects of 2,4-Dichlorophenoxyacetic acid and Thidiazuron on Callus Induction and Organogenesis in the Medicinal Plant Calotropis procera

Document Type : Original Article

Authors

1 Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran

2 Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.

Abstract

Calotropis procera, a medicinally and industrially valuable plant of the Apocynaceae family, faces challenges in propagation due to declining seed germination potential and lack of set mass production methods. This study evaluates the effects of plant growth regulators, specifically 2,4-Dichlorophenoxyacetic acidichlorophenoxyacetic acid and Thidiazuron, on callus induction, shoot formation, leaf development, and root induction in stem explants of C. procera. Tissue culture techniques were employed to address propagation challenges and conserve this species.
The highest callus induction (100%) was achieved using 7.5 mg/L 2,4-Dichlorophenoxyacetic acidichlorophenoxyacetic acid and 7.5 mg/L Thidiazuron, with auxins and cytokinins demonstrating a synergistic effect in promoting cell division. For shoot formation, the optimal combination was 1.25 mg/L 2,4-Dichlorophenoxyacetic acidichlorophenoxyacetic acid and 5 mg/L Thidiazuron, while leaf formation peaked with 1.25 mg/L Thidiazuron alone. Excessive Thidiazuron concentrations, however, inhibited leaf formation, underscoring the importance of hormonal balance. Root induction was most effective with 2.5 mg/L 2,4-Dichlorophenoxyacetic acidichlorophenoxyacetic acid and 7.5 mg/L Thidiazuron, whereas treatments with high cytokinin concentrations were found to hinder root growth.
These findings align with prior research on other medicinal plants, such as Catharanthus roseus and Calotropis gigantea, demonstrating the complementary roles of auxins and cytokinins in plant tissue culture. This study highlights the potential of tissue culture as a scalable and sustainable method for the propagation and conservation of C. procera, ensuring the preservation of its medicinal and industrial applications.
This study confirmed that the proper balance between auxin and cytokinin is important for the successful induction of each growth phase in the plant. This study highlights the potential of tissue culture as a scalable and sustainable method for the propagation and conservation of C. procera, ensuring the preservation of its medicinal and industrial applications.

Keywords


Abasi, H., 2017. Study of milkweed (Calotropis procera) regeneration potential in vitro culture conditions. Journal of Plant Research (Iranian Journal of Biology), 29(4), pp.833-842. DOI: 20.1001.1.23832592.1395.29.4.13.1
Agustina, M., Maisura, M. and Handayani, R.S., 2020. The effect of different seed cutting treatments and concentrations of BAP for the successful in vitro micrografting of mangosteen (Garcinia mangostana L.). Journal of Tropical Horticulture, 3(1), pp.1-5. DOI: http://dx.doi.org/10.33089/jthort.v3i1.37.
Alencar, N.M.N., Oliveira, J.S., Mesquita, R.O., Lima, M.W., Vale, M.R., Etchells, J.P., Freitas, C.D.T. and Ramos, M.V., 2006. Pro- and anti-inflammatory activities of the latex from Calotropis procera (Ait.) R. Br. are triggered by compounds fractionated by dialysis. Inflammation Research, 55, pp.559-564. https://doi.org/10.1007/s00011-006-6025-y.
Allen, P., Bennett, K. and Heritage, B., 2014. SPSS Statistics version 22: A practical guide. Cengage Learning Australia. ISBN 978‑0170348973.
Chavda, R., Vadalia, K.R. and Gokani, R.L., 2010. Hepatoprotective and antioxidant activity of root bark of Calotropis procera R. Br (Asclepediaceae). DOI: 10.3923/ijp.2010.937.943
Chen, L., Zhao, J., Song, J. and Jameson, P.E., 2020. Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnology Journal, 18(3), pp.614-630. doi: 10.1111/pbi.13305.
Dhandapani, M., Kim, D.H. and Hong, S.B., 2008. Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cellular & Developmental Biology-Plant, 44, pp.18-25. DOI: 10.1007/s11627-007-9094-x.
Galal, T.M., Farahat, E.A., El-Midany, M.M. and Hassan, L.M., 2015. Effect of temperature, salinity, light and time of dehiscence on seed germination and seedling morphology of Calotropis procera from urban habitats. African Journal of Biotechnology, 14(15), pp.1275-1282. DOI: 10.5897/AJB2014.14305.
García González, R., Quiroz Bravo, K., Carrasco Galvez, B.A. and Caligari, P.D., 2010. Plant tissue culture: Current status, opportunities and challenges. DOI: 10.4067/S0718-16202010000300001.
George, E.F., Hall, M.A. and De Klerk, G.J., 2008. Plant propagation by tissue culture, 3rd Edition. The Netherlands, The BackGround Springer, pp.65-175. DOI: 10.1007/978-1-4020-5005-3.
George, E.F., Hall, M.A. and Klerk, G.J.D., 2008. The anatomy and morphology of tissue cultured plants. In Plant propagation by tissue culture: Volume 1. The background (pp. 465-477). Dordrecht: Springer Netherlands. DOI: 10.1007/978-1-4020-5005-3_13.
Iqbal, Z., Lateef, M., Jabbar, A., Muhammad, G. and Khan, M.N., 2005. Anthelmintic activity of Calotropis procera (Ait.) Ait. F. flowers in sheep. Journal of Ethnopharmacology, 102(2), pp.256-261. DOI: 10.1016/j.jep.2005.06.022.
Kumar, N. and Reddy, M.P., 2011. In vitro plant propagation: a review. Journal of forest and environmental science, 27(2), pp.61-72. DOI: doi.org/10.7747/JFS.2011.27.2.1.
Lincy, A. and Sasikumar, B., 2010. Enhanced adventitious shoot regeneration from aerial stem explants of ginger using TDZ and its histological studies. Turkish Journal of Botany, 34(1), pp.21-29. DOI: 10.3906/bot-0805-6.
Lindsey III, B.E., Rivero, L., Calhoun, C.S., Grotewold, E., and Brkljacic, J., 2017. Standardized method for high-throughput sterilization of Arabidopsis seeds. Journal of visualized experiments: JoVE, (128), p.56587. DOI: 10.3791/56587.
Magalhães, H.I., Ferreira, P.M., Moura, E.S., Torres, M.R., Alves, A.P., Pessoa, O.D., Costa-Lotufo, L.V., Moraes, M.O. and Pessoa, C., 2010. In vitro and in vivo antiproliferative activity of Calotropis procera stem extracts. Anais da Academia Brasileira de Ciências, 82, pp.407-416. DOI: 10.1590/s0001-37652010000200017.
Malik, N.U.A., Fajer, O., Amin, L., Khalid, A.R., Khan, N., Bhatti, M.F., Munir, F., Haider, G., Amir, R. and Gul, A., 2023. Phytohormones, plant growth, and development. In Phytohormones and Stress Responsive Secondary Metabolites (pp. 175-186). Academic Press. DOI: 10.1016/B978-0-323-91883-1.00014-0.
Mohebi, Z., 2021. The important medicinal and industrial properties of Calotropis procera (Aiton) WT. Journal of Medicinal Plants Biotechnology, 7(1), pp.16-29. DOI: 10.30470/jmpb.2021.251028.
Murashige, T. and Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3). DOI: 10.1111/j.1399-3054.1962.tb08052.x.
Muthi’ah, A., Sakya, A.T., Setyawati, A. and Rahayu, M., 2023, May. Callus induction of Calotropis gigantea using BAP and 2, 4-D in vitro. In IOP Conference Series: Earth and Environmental Science (Vol. 1177, No. 1, p. 012021). IOP Publishing. DOI: 10.1088/1755-1315/1177/1/012021.
Parić, A., Čakar, J., Muratović, E. and Karalija, E., 2011. Induction of bulblets on leaf and bulb explants of endangered Lilium bosniacum (G. Beck) G. Beck ex Fritsch. Botanica Serbica35(1), pp.31-35. DOI: 10.5960/bos.35.1.4.
Rineksane, I.A., Juliarachmi, A.F., Putri, R.K., Astuti, A. and Samidjo, G.S., 2021, April. Optimization of 2, 4-D and cytokinin combination for the growth of Vanda tricolor in solid and liquid medium. In IOP Conference Series: Earth and Environmental Science (Vol. 752, No. 1, p. 012025). IOP Publishing. DOI: 10.1088/1755-1315/752/1/012025
Rout, G.R., Samantaray, S. and Das, P., 2000. In vitro manipulation and propagation of medicinal plants. Biotechnology advances, 18(2), pp.91-120. DOI: 10.1016/s0734-9750(99)00026-9
Sidik, N.J., Agha, H.M., Alkamil, A.A., Alsayadi, M.M.S. and Mohammed, A.A., 2024. A Mini Review of Plant Tissue Culture: The Role of Media Optimization, Growth Regulators in Modern Agriculture, Callus Induction and the Applications. AUIQ Complementary Biological System, 1(2), pp.96-109. DOI: 10.70176/3007-973X.1019.
Talitha, O., Sakya, A.T., Hartati, S., Rahayu, M. and Setyawati, A., 2023, September. Application of BAP and IBA for In Vitro Callus Formation of Biduri (Calotropis gigantea). In IOP Conference Series: Earth and Environmental Science (Vol. 1246, No. 1, p. 012012). IOP Publishing. DOI: 10.1088/1755-1315/1246/1/012012.
Tripathi, P.K., Awasthi, S., Kanojiya, S., Tripathi, V. and Mishra, D.K., 2013. Callus culture and in vitro biosynthesis of cardiac glycosides from Calotropis gigantea (L.) Ait. In Vitro Cellular & Developmental Biology-Plant49, pp.455-460. DOI: 10.1007/s11627-012-9481-9.
Van Quaquebeke, E., Simon, G., André, A., Dewelle, J., Yazidi, M.E., Bruyneel, F., Tuti, J., Nacoulma, O., Guissou, P., Decaestecker, C. and Braekman, J.C., 2005. Identification of a Novel Cardenolide (2 ‘‘-Oxovoruscharin) from Calotropis procera and the Hemisynthesis of Novel Derivatives Displaying Potent in Vitro Antitumor Activities and High in Vivo Tolerance: Structure-Activity Relationship Analyses. Journal of medicinal chemistry, 48(3), pp.849-856. DOI: 10.1021/jm049405a.