Investigating the Effect of Nutrients on Cocultivation of Haematococcus pluvialis and Xanthophyllomyces dendrorhous

Document Type : Original Article

Authors

1 Department of Chemical Engineering, Isfahan University of Technology

2 Department Of Chemical Engineering

10.48308/pae.2025.238454.1102

Abstract

Microalgae Haematococcus pluvialis and yeast Xanthophyllomyces dendrorhous are two microorganisms known for their ability to produce astaxanthin, a valuable carotenoid with huge applications in various industries. This study aimed to investigate the optimal culture medium for the coculture of these two species, focusing on providing appropriate nutrients for their growth, particularly before H. pluvialis enters the red phase. Growth curves of H. pluvialis and X. dendrorhous were obtained in their standard media, Bold's Basal Medium (BBM) and Yeast Malt (YM) medium, respectively. Four candidate media were prepared based on BBM and YM constituents: BBM with glucose (BG), BBM with glucose and malt (BGM), BBM with glucose and peptone (BGP), and BBM with glucose and yeast extract (BGY). Cell numbers of both species were compared after 6 days of coculture incubation. Results showed that H. pluvialis exhibited the highest cell densities in BGM and BGY media, reaching 1.22×105 and 1.488×105 cells/mL, respectively. In contrast, the highest growth of X. dendrorhous was observed in BG medium, with a maximum cell density of 3.8 × 105 cells/mL. BGM demonstrated the balanced growth for both species, while BGY resulted in the highest cell concentration for H. pluvialis and controlled the growth of X. dendrorhous. The study highlights the importance of selecting a culture medium that balances the growth of both species and ensures controlled nutrient competition for a productive co-culture system. These findings contribute to the development of efficient co-cultivation strategies to enhance the cell growth rate and productivity.

Keywords


Arora, N., Patel, A., Mehtani, J., Pruthi, P. A., Pruthi, V. and Poluri, K. M. (2019) 'Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity', Environmental Science and Pollution Research, 26(17), pp. 16952-16973. DOI: https://doi.org/10.1007/s11356-019-05138-6.
Ashtiani, F.-R., Jalili, H., Rahaie, M., Sedighi, M. and Amrane, A. (2021) 'Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase expression', Journal of Bioscience and Bioengineering, 131(4), pp. 364-372. DOI: https://doi.org/10.1016/j.jbiosc.2020.11.006.
Bader, J., Mast-Gerlach, E., Popović, M. K., Bajpai, R. and Stahl, U. (2010) 'Relevance of microbial coculture fermentations in biotechnology', Journal of Applied Microbiology, 109(2), pp. 371-387. DOI: https://doi.org/10.1111/j.1365-2672.2009.04659.x.
Bakri, Y., Jacques, P. and Thonart, P. (2003) 'Xylanase production by Penicillium canescens 10–10c in solid-state fermentation', Applied Biochemistry and Biotechnology, 108(1), pp. 737-748. DOI: https://doi.org/10.1385/ABAB:108:1-3:737.
Castelblanco-Matiz, L., Barbachano, A., Ponce-Noyola, T., Ramos-Valdivia, A., García-Rojas, C., Flores-Ortiz, C., Barahona-Crisóstomo, S., Baeza-Cancino, M., Alcaino, J. and Cifuentes, V. (2015) 'Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain', Archives of microbiology, 197. DOI: https://doi.org/10.1007/s00203-015-1153-9.
Da Cruz, S. H., Cilli, E. M. and Ernandes, J. R. (2002) 'Structural Complexity of the Nitrogen Source and Influence on Yeast Growth and Fermentation', Journal of the Institute of Brewing, 108(1), pp. 54-61. DOI: https://doi.org/10.1002/j.2050-0416.2002.tb00124.x.
Domínguez-Bocanegra, A. R., Ponce-Noyola, T. and Torres-Muñoz, J. A. (2007) 'Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study', Appl Microbiol Biotechnol, 75(4), pp. 783-91. DOI: https://doi.org/10.1007/s00253-007-0889-9.
Dong, Q.-L. and Zhao, X.-M. (2004) 'In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma', Catalysis Today, 98(4), pp. 537-544. DOI: https://doi.org/10.1016/j.cattod.2004.09.052.
Fábregas, J., Domínguez, A., Regueiro, M., Maseda, A. and Otero, A. (2000) 'Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis', Applied Microbiology and Biotechnology, 53(5), pp. 530-535. DOI: https://doi.org/10.1007/s002530051652 .
Gassel, S., Breitenbach, J. and Sandmann, G. (2014) 'Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant', Appl Microbiol Biotechnol, 98(1), pp. 345-50. DOI: https://doi.org/10.1007/s00253-013-5358-z .
Gherabli, A., Grimi, N., Lemaire, J., Vorobiev, E. and Lebovka, N. (2023) 'Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies', Molecules, 28(5), pp. 2089. DOI: https://doi.org/10.3390/molecules28052089.
Karitani, Y., Yamada, R., Matsumoto, T. and Ogino, H. (2024) 'Improvement of cell growth in green algae Chlamydomonas reinhardtii through co-cultivation with yeast Saccharomyces cerevisiae', Biotechnology Letters, 46(3), pp. 431-441. DOI: https://doi.org/10.1007/s10529-024-03483-2.
Kim, B., Youn Lee, S., Lakshmi Narasimhan, A., Kim, S. and Oh, Y.-K. (2022) 'Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances', Bioresource Technology, 343, pp. 126124. DOI: https://doi.org/10.1016/j.biortech.2021.126124.
Kitcha, S. and Cheirsilp, B. (2014) 'Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads', Applied Biochemistry and Biotechnology, 173(2), pp. 522-34. DOI: https://doi.org/10.1007/s12010-014-0859-5.
Lee, C., Choi, Y.-E. and Yun, Y.-S. (2016) 'A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application', Journal of Biotechnology, 236, pp. 120-127. DOI: https://doi.org/10.1016/j.jbiotec.2016.08.012.
Liu, L., Chen, J., Lim, P.-E. and Wei, D. (2018) 'Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production', Journal of Applied Phycology, 30(6), pp. 2997-3007. DOI: https://doi.org/10.1007/s10811-018-1526-y.
Lodato, P., Alcaíno, J., Barahona, S., Niklitschek, M., Carmona, M., Wozniak, A., Baeza, M., Jiménez, A. and Cifuentes, V. (2007) 'Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous', Biology Researches, 40(1), pp. 73-84. DOI: https://doi.org/10.4067/s0716-97602007000100008.
Marcoleta, A., Niklitschek, M., Wozniak, A., Lozano, C., Alcaíno, J., Baeza, M. and Cifuentes, V. (2011) '"Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous"', BMC Microbiology, 11(1), pp. 190. DOI: https://doi.org/10.1186/1471-2180-11-190.
Mota, G. C. P., Moraes, L. B. S. d., Oliveira, C. Y. B., Oliveira, D. W. S., Abreu, J. L. d., Dantas, D. M. M. and Gálvez, A. O. (2022) 'Astaxanthin from Haematococcus pluvialis: processes, applications, and market', Preparative Biochemistry & Biotechnology, 52(5), pp. 598-609. DOI: https://doi.org/10.1080/10826068.2021.1966802.
Nahidian, B., Ghanati, F., Shahbazi, M. and Soltani, N. (2018) 'Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1', Bioresource Technology, 255, pp. 229-237. DOI: https://doi.org/10.1016/j.biortech.2018.01.130.
Naseema Rasheed, R., Pourbakhtiar, A., Mehdizadeh Allaf, M., Baharlooeian, M., Rafiei, N., Alishah Aratboni, H., Morones-Ramirez, J. R. and Winck, F. V. (2023) 'Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges', Frontiers in Bioengineering and Biotechnology, Volume 11 - 2023. DOI: https://doi.org/10.3389/fbioe.2023.1193424.
Pan, X., Wang, B., Gerken, H. G., Lu, Y. and Ling, X. (2017) 'Proteomic analysis of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to low carbon levels', Bioprocess and Biosystems Engineering, 40(7), pp. 1091-1100. DOI: https://doi.org/10.1007/s00449-017-1771-5.
Pang, N. and Chen, S. (2017) 'Effects of C5 organic carbon and light on growth and cell activity of Haematococcus pluvialis under mixotrophic conditions', Algal Research, 21, pp. 227-235. DOI: https://doi.org/10.1016/j.algal.2016.12.003.
Qin, L., Liu, L., Wang, Z., Chen, W. and Wei, D. (2019) 'The mixed culture of microalgae Chlorella pyrenoidosa and yeast Yarrowia lipolytica for microbial biomass production', Bioprocess and Biosystems Engineering, 42(9), pp. 1409-1419. DOI: https://doi.org/10.1007/s00449-019-02138-1.
Rodríguez-Sáiz, M., de la Fuente, J. L. and Barredo, J. L. (2010) 'Xanthophyllomyces dendrorhous for the industrial production of astaxanthin', Applied Microbiology and Biotechnology, 88(3), pp. 645-58. DOI: https://doi.org/10.1007/s00253-010-2814-x.
Samhat, K., Kazbar, A., Takache, H., Gonçalves, O., Drouin, D., Ismail, A. and Pruvost, J. (2024) 'Optimization of continuous astaxanthin production by Haematococcus pluvialis in nitrogen-limited photobioreactor', Algal Research, 80, pp. 103529. DOI: https://doi.org/10.1016/j.algal.2024.103529.
Tripathi, U., Sarada, R., Rao, S. R. and Ravishankar, G. A. (1999) 'Production of astaxanthin in Haematococcus pluvialis cultured in various media', Bioresource Technology, 68(2), pp. 197-199. DOI: https://doi.org/10.1016/S0960-8524(98)00143-6.
Villegas-Méndez, M. Á., Papadaki, A., Pateraki, C., Balagurusamy, N., Montañez, J., Koutinas, A. A. and Morales-Oyervides, L. (2021) 'Fed-batch bioprocess development for astaxanthin production by Xanthophyllomyces dendrorhous based on the utilization of Prosopis sp. pods extract', Biochemical Engineering Journal, 166, pp. 107844. DOI: https://doi.org/10.1016/j.bej.2020.107844.
Wang, J., Sommerfeld, M., Lu, C. and Hu, Q. (2013) 'Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation', ALGAE, 28. DOI: https://doi.org/10.4490/algae.2013.28.2.193.
Wozniak, A., Lozano, C., Barahona, S., Niklitschek, M., Marcoleta, A., Alcaíno, J., Sepulveda, D., Baeza, M. and Cifuentes, V. (2011) 'Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source', FEMS Yeast Research, 11(3), pp. 252-262. DOI: https://doi.org/10.1111/j.1567-1364.2010.00711.x.
Xu, Z., Theodoropoulos, C. and Pittman, J. K. (2024) 'Optimization of a Chlorella–Saccharomyces co–culture system for enhanced metabolite productivity', Algal Research, 79, pp. 103455. DOI: https://doi.org/10.1016/j.algal.2024.103455.
Yen, H.-W., Chen, P.-W. and Chen, L.-J. (2015) 'The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation', Bioresource Technology, 184, pp. 148-152. DOI: https://doi.org/10.1016/j.biortech.2014.09.113.
Zeng, Y., Xie, T., Li, P., Jian, B., Li, X., Xie, Y. and Zhang, Y. (2018) 'Enhanced lipid production and nutrient utilization of food waste hydrolysate by mixed culture of oleaginous yeast Rhodosporidium toruloides and oleaginous microalgae Chlorella vulgaris', Renewable Energy, 126, pp. 915-923. DOI: https://doi.org/10.1016/j.renene.2018.04.020.
Zhao, Y., Yue, C., Geng, S., Ning, D., Ma, T. and Yu, X. (2019) 'Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation', Bioprocess and Biosystems Engineering, 42(4), pp. 593-602. DOI: https://doi.org/10.1007/s00449-018-02064-8.