Regulation of Dunaliella salina Malate Dehydrogenase Gene Expression by Interfering Ribonucleotides

Document Type : Original Article

Authors

Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

The microalga Dunaliella salina is one of the most resilient organisms adapted to harsh environments. Research indicates that the organisms, especially plants, respond to various environmental stresses differently. D. salina has emerged as a halotolerant model organism for studying stress adaptation due to its ability to thrive under extreme salinity, light, and nutrient-deficient conditions. It produces a vital carotenoid, 9-cis beta-carotene, which is utilized in medical industry.  One of the significant interferences in stress responses is mediated by 21-24 nucleotide interfering RNAs. Malate dehydrogenase is a key enzyme involved in energy metabolism in both mitochondria and chloroplasts, and its transcription and activity regulation are highly significant. This study investigated the number of miRNA binding sites to the malate dehydrogenase transcript. The involvement of some miRNAs, including novel-m0533-3p, in energy-related metabolism has been identified. The results showed that the mitochondrial transcript had 5 binding sites and the chloroplast transcript had 1 binding site for novel-m0533-3p miRNA. The low number of miRNA binding sites to the chloroplast malate dehydrogenase mRNA sequence indicates that perhaps other gene expression regulation methods control the chloroplast malate dehydrogenase gene or probably, Chloroplastic Malat Dehydrogenase is regulated by enzyme activity, and also the 5 point of binding sites of the miRNA to the mitochondrial malate dehydrogenase mRNA, indicates that this type of gene expression regulation is more dominant. Our results suggest that miRNAs act as dynamic regulators that modulate MDH expression in a stress-type-dependent manner. These findings align with previous studies emphasizing post-transcriptional regulation as a key mechanism for microalgae adaptation to harsh environments.

Keywords


Afonso-Grunz, F. & Müller, S. 2015. Principles of miRNA–mRNA interactions: beyond sequence complementarity. Cellular and Molecular Life Sciences, 72, 3127-3141. DOI:10.1007/s00018-015-1922-2.
Barczak-Brzyżek, A., Brzyżek, G., Koter, M., Siedlecka, E., Gawroński, P. & Filipecki, M. 2022. Plastid retrograde regulation of miRNA expression in response to light stress. BMC Plant Biology, 22, 150. DOI. 10.1186/s12870-022-03525-9.
Ermakova, M., Woodford, R., Fitzpatrick, D., Nix, S. J., Zwahlen, S. M., Farquhar, G. D., Von Caemmerer, S. & Furbank, R. T. 2024. Chloroplast NADH dehydrogenase‐like complex‐mediated cyclic electron flow is the main electron transport route in C4 bundle sheath cells. New Phytologist, 243, 2187-2200. DOI: 10.1111/nph.19982. Epub 2024 Jul 22.
Fabian, M. R., Sundermeier, T. R. & Sonenberg, N. 2009. Understanding how miRNAs post-transcriptionally regulate gene expression. miRNA regulation of the translational machinery, 1-20. DOI: 10.1007/978-3-642-03103-8_1.
Fang, Z. & Rajewsky, N. 2011. The impact of miRNA target sites in coding sequences and in 3′ UTRs. PloS One, 6, e18067. DOI: 10.1371/journal.pone.0018067.
Huang, J., Niazi, A. K., Young, D., Rosado, L. A., Vertommen, D., Bodra, N., Abdelgawwad, M. R., Vignols, F., Wei, B. & Wahni, K. 2018. Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. Journal of Experimental Botany, 69, 3491-3505. DOI: 10.1093/jxb/erx396.
Hurschler, B. A., Ding, X. C. & Großhans, H. 2010. Translational control of endogenous MicroRNA target genes in C. elegans. miRNA Regulation of the Translational Machinery, 21-40. https://DOI.org/10.1007/978-3-642-03103-8_2.
Infantino, V., Santarsiero, A., Convertini, P., Todisco, S. & Iacobazzi, V. 2021. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target. International Journal of Molecular Sciences, 22, 5703. DOI: 10.3390/ijms22115703.
Kansal, S., Panwar, V., Mutum, R. D. & Raghuvanshi, S. 2021. Investigations on regulation of micrornas in rice reveal [Ca2+] cyt signal transduction regulated microRNAs. Frontiers in Plant Science, 12, 720009. DOI: 10.3389/fpls.2021.720009.
Lackner, D. H. & Bähler, J. 2008. Translational control of gene expression: from transcripts to transcriptomes. International Review of Cell and Molecular Biology, 271, 199-251. DOI: 10.1016/S1937-6448(08)01205-7.
Li, Z., Shi, L., Lin, X., Tang, B., Xing, M. & Zhu, H. 2023. Genome-wide identification and expression analysis of malate dehydrogenase gene family in sweet potato and its two diploid relatives. International Journal of Molecular Sciences, 24, 16549. DOI: 10.3390/ijms242316549.
Li, Z., Yang, J., Zou, J.-J., Cai, X., Zeng, X. & Xing, W. 2024. A systematic review on the role of miRNAs in plant response to stresses under the changing climatic conditions. Plant Stress, 100674.
Lou, S., Zhu, X., Zeng, Z., Wang, H., Jia, B., Li, H. & Hu, Z. 2020. Identification of microRNAs response to high light and salinity that are involved in beta-carotene accumulation in microalga Dunaliella salina. Algal Research, 48, 101925. DOI: https://DOI.org/10.1016/j.algal.2020.101925.
Martinez-Vaz, B. M., Howard, A. L., Jamburuthugoda, V. K. & Callahan, K. P. 2024. Insights into the regulation of malate dehydrogenase: inhibitors, activators, and allosteric modulation by small molecules. Essays in Biochemistry, DOI: 10.1042/EBC20230087.
Miginiac‐Maslow, M., Johansson, K., Ruelland, E., Issakidis‐Bourguet, E., Schepens, I., Goyer, A., Lemaire‐Chamley, M., Jacquot, J. P., Le Maréchal, P. & Decottignies, P. 2000. Light‐activation of NADP‐malate dehydrogenase: a highly controlled process for an optimized function. Physiologia Plantarum, 110, 322-329. DOI: https://DOI.org/10.1016/j.algal.2020.101925.
Minarik, P., Tomaskova, N., Kollarova, M. & Antalik, M. 2002. Malate dehydrogenases-structure and function. General Physiology and Biophysics, 21, 257-266. https://libstc.cc/#/stc/nid:8qhiarku024ombgo6ztjjwcr0.
Musrati, R., Kollarova, M., Mernik, N. & Mikulasova, D. 1998. Malate dehydrogenase: distribution, function, and properties. General Physiology and Biophysics, 17, 193-210.
Nalawade, R. & Singh, M. 2023. Intracellular Compartmentalization: A Key Determinant of MicroRNA Functions. MicroRNA, 12, 114-130. DOI: 10.2174/2211536612666230330184006.
Ni, F.-T., Chu, L.-Y., Shao, H.-B. & Liu, Z.-H. 2009. Gene expression and regulation of higher plants under soil water stress. Current Genomics, 10, 269-280. DOI: 10.2174/138920209788488535.
Rao, Y., Jin, G., Liu, M., Li, X., Zhang, H., Xia, C. & Xiong, Y. 2016. Effect and mechanism of miR-206/miR-613 on the expression of OATP1B1. Yao xue xue bao, Acta Pharmaceutica Sinica, 51, 1858-1863. https://libstc.cc/#/stc/nid:dhc4gvnfvmfoeu5az9d6a9v8c.
Schwartzbach, S. D. 2017. Photo and nutritional regulation of Euglena organelle development. Euglena: biochemistry, cell and molecular biology, 159-182. DOI: 10.1007/978-3-319-54910-1_9.
Wang, Q. J., Sun, H., Dong, Q. L., Sun, T. Y., Jin, Z. X., Hao, Y. J. & Yao, Y. X. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal, 14, 1986-1997. DOI: 10.1111/pbi.12556.
Xiao, W., Wang, R.-S., Handy, D. E. & Loscalzo, J. 2018. NAD (H) and NADP (H) redox couples and cellular energy metabolism. Antioxidants & Redox Signaling, 28, 251-272. DOI: 10.1089/ars.2017.7216.
Yoshida, K., Hara, S. & Hisabori, T. 2015. Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. Journal of Biological Chemistry, 290, 14278-14288. DOI: 10.1074/jbc.A115.647545.
Zarandi-Miandoab, L., Hejazi, M.-A., Bagherieh-Najjar, M.B. & Chaparzadeh, N. 2015. Light intensity effects on some molecular and biochemical characteristics of Dunaliella salina. Iranian Journal of Plant Physiology, 5, 1311-1321.
Zarandi-Miandoab, L., Hejazi, M.-A., Bagherieh-Najjar, M.B. & Chaparzadeh, N. 2019. Optimization of the four most effective factors on β-carotene production by Dunaliella salina using response surface methodology. Iranian Journal of Pharmaceutical Research: IJPR, 18, 1566. DOI: 10.22037/ijpr.2019.1100752.