Role of Screening Elements on Quality of Wastewater by Marine Cyanobacterium Fischerella muscicola

Document Type : Original Article

Authors

1 Dept. petroleum microbiology, Research center of applied science of ACECR, Shahid Beheshti university

2 Depart. Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran

Abstract

Todays, industrialization along with the growth of population have increased wastewater production that become one of the serious problems for ecosystems and environment. Conventional wastewater treatments (physical or chemical methods) that consume great deal of energy and cost, are not very effective in removing nutrients like nitrogen and phosphorus so application of biological methods such as using microalgae have been noticed. Wastewater usually contain various compounds such as nitrate and phosphate that can be used as culture medium for microalgae (cyanobacteria). So consumption and elimination of these elements from media not only helps to biological treatment of wastewaters but also cause to higher productivity of these organisms. In this research, screening artificial wastewater elements and their role in physiological activities of the cyanobacterium Fischerella muscicola have been studied. Our specimen isolated from Caspian Sea and identified molecularly according to 16s rRNA. Artificial wastewater treatments were designed by Design-Expert software in 12 runs by adding various amounts of NaCl, CaCl2, MgSO4, NaNO3, K2HPO4 to BG110 medium and microalgae were cultured in them. Analysis of treatments according to the changes of cations (Na+, Ca2+, Mg2+), anions (Cl-, NO3-, PO43-), TDS and COD were performed on logarithmic phase(10th day of the culture). According to the results, screening of wastewater elements were done by parreto plot and normal plot charts. Results showed that among applied elements in wastewater, NaCl, NaNO3 and K2HPO4 have the most effect on growth of Fischerella and changes of cations, anions, TDS and COD. As removing nutrients from media have related to the growth, so wastewater (especially with nitrate and phosphate) could be an appropriate media for microalgal growth and producing various bioactive compounds.

Keywords


Aditya, L., Mahlia, T.I., Nguyen, L.N., Vu, H.P. and Nghiem, L.D., 2022. Microalgae-bacteria consortium for wastewater treatment and biomass production. Science of the total environment, 838, p.155871. DOI: https://doi.org/10.1016/j.scitotenv.2022.155871.
Ajala, S.O. and Alexander, M.L., 2020. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering11(3), pp.311-326. DOI: https://doi.org/10.1007/s40095-019-00333-0.
Al-Jabri, H., Das, P., Khan, S., Thaher, M. and AbdulQuadir, M., 2021. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water, 13(1), p.27. DOI: https://doi.org/10.3390/w13010027.
Belcher, H. and Swale, E., 1982. Culturing algae. A guide for schools and colleges. Institute of Terrestrial Ecology. Belcher, H. 1982. Culturing algae, a guide for schools and colleges. Tilus Wilson & Son LTD.
Benítez, M.B., Champagne, P., Ramos, A., Torres, A.F. and Ochoa-Herrera, V., 2019. Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environmental technology40(22), pp.2977-2985. DOI: doi/abs/10.1080/09593330.2018.1459874.
 Benítez, M. B., Champagne, P., Ramos, A., Torres, A. F., Ochoa-Herrera, V. 2019. Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environmental Technology, 40(22), 2977-85
Boonchai, R., Seo, G.T. and Seong, C.Y., 2012. Microalgae photobioreactor for nitrogen and phosphorus removal from wastewater of a sewage treatment plant. International journal of bioscience, biochemistry and bioinformatics2(6), p.407. DOI: 10.7763/IJBBB.2012.V2.143. Boonchai, R., Seo, G., Park, D., Seong, C. 2012. Microalgae photobioreactor for nitrogen and phosphorus removal from wastewater of a sewage treatment plant. International Journal of Bioscience, Biochemistry and Bioinformatics, 2, 407-410.
Chen, Z., Xiao, Y., Liu, T., Yuan, M., Liu, G., Fang, J. and Yang, B., 2021. Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms9(12), p.2469.  DOI: https://doi.org/10.3390/microorganisms9122469.
 Chen, Z., Xiao, Y., Liu, T., Yuan, M., Liu, G., Fang, J., Yang, Bo. 2021. Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms, 9(12), 2469.
Do, J.M., Jo, S.W., Kim, I.S., Na, H., Lee, J.H., Kim, H.S. and Yoon, H.S., 2019. A feasibility study of wastewater treatment using domestic microalgae and analysis of biomass for potential applications. Water, 11(11), p.2294. DOI: https://doi.org/10.3390/w11112294.
 Do, J.-Mi, Jo, S.-W., Kim, I.-S., Na, H., Lee, J.H., Kim, H.S. 2019. A feasibility study of wastewater treatment using domestic microalgae and analysis of biomass for potential applications. Water,11, 2294.
Foladori, P., Petrini, S. and Andreottola, G., 2018. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal345, pp.507-516.  DOI: https://doi.org/10.1016/j.cej.2018.03.178.
Foladori, P., Petrini, S., Andreottola, G. 2018. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516.
Gonçalves, A.L., Pires, J.C. and Simões, M., 2017. A review on the use of microalgal consortia for wastewater treatment. Algal Research24, pp.403-415. DOI: https://doi.org/10.1016/j.algal.2016.11.008.
Gonçalves, A. L., Pires, J. C., Simões, M. 2017. A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-15.
Vo, H.N.P., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Chen, Z., Wang, X.C., Chen, R. and Zhang, X., 2020. Microalgae for saline wastewater treatment: a critical review. Critical Reviews in Environmental Science and Technology50(12), pp.1224-1265. DOI: https://doi.org/10.1080/10643389.2019.1656510.
 Hoang Nhat, V, Ngo, HH, Guo, W, Chang, SW, Nguyen, DD, Chen, Z., Chen, R., Zhang, X. 2019. Microalgae for saline wastewater treatment: a critical review. Critical Reviews in Environmental Science and Technology. DOI: DOI.org/10.1080/10643389. 2019.1656510.
Iranshahi, S., Nejadsattari, T., Soltani, N., Shokravi, S. and Dezfulian, M., 2014. The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Science. 13 (4), pp.907-917. Iranshahi, Sh., Nejadsattari, T., Soltani, N., Shokravi, Sh., Dezfulian, M. 2014. The effect of salinity on morphological and molecular characters and physiological response of Nostoc sp. ISC 101. Iranian Journal of Fisheries Science . 13 (4): 907-917.
Ji, B. and Liu, Y., 2021. Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment. Acs Es&T Water, 1(12), pp.2459-2469.DOI: https://doi.org/10.1021/acsestwater.1c00303.
Ji, B., Liu, Y. 2021. Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment. ACS EST Water, 1(12), 2459-2469.
Kaushik, B.D. 1987. Laboratory methods for blue-green algae. Associated Publishing Company. Khaldi, H., Maatoug, M., Dube, C.S., Ncube, M., Tandlich, R., Heilmeier, H., Laubscher, R.K. and Dellal, A., 2017. Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of fundamental and applied sciences9(3), pp.1454-1472.. DOI:10.4314/jfas.v9i3.13.
Khaldi, H., Maatoug, M., Dube, C.S., Ncube, M., Tandlich, R., Heilmeier, H., Della, A., Laubscher, R. K. 2017. Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of Fundamental and Applied Sciences, 9(3), 1454-1572.
Khan, S.R., Sharma, B., Chawla, P.A. and Bhatia, R., 2022. Inductively coupled plasma optical emission spectrometry (ICP-OES): a powerful analytical technique for elemental analysis. Food Analytical Methods, pp.1-23. https://doi.org/10.1007/s12161-021-02148-4.
Khan, S.R., Sharma, B., Chawla, P.A. 2022. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): A Powerful Analytical Technique for Elemental Analysis. Food Analysis Methods 15, 666–688. DOI: https://doi.org/10.1007/s12161-021-02148-4.
Kim, J., Lingaraju, B.P., Rheaume, R., Lee, J.Y. and Siddiqui, K.F., 2010. Removal of ammonia from wastewater effluent by Chlorella vulgarisTsinghua Science and Technology15(4), pp.391-396. DOI: 10.1016/S1007-0214(10)70078-X.
Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., Siddiqui, K. F. 2010. Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Science and Technology, 15(4), 391-6. Krustok, I., Odlare, M., Truu, J. and Nehrenheim, E., 2016. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology202, pp.238-243. DOI: https://doi.org/10.1016/j.biortech.2015.12.020.
Krustok, I., Odlare, M., Truu, J., Nehrenheim, E. 2016. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243.
Kurniawati, P., Gusrianti, R., Dwisiwi, B.B., Purbaningtias, T.E. and Wiyantoko, B., 2017, December. Verification of spectrophotometric method for nitrate analysis in water samples. In AIP Conference Proceedings (Vol. 1911, No. 1). AIP Publishing. DOI: doi.org/10.10631/1.5016005.
Kurniawati, P., Gusrianti, R., Dwisiwi, B., Purbaningtias, T.E., Wiyantoko, B. 2024. Verification of spectrophotometric methods for nitrate analysis in water samples, AIP Con.proc., 1911-020012-1-020012-6. DOI: doi.org/10.10631/1.5016005.
Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M., and Chen, P., 2019. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource technology, 291, p.121934. DOI: https://doi.org/10.1016/j.biortech.2019.121934.
Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, Shuhao, Cheng, p., Liu, J., Addy, M., Chen, P., Chen, D., Ruan, R. 2019. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934.
Markou, G., Vandamme, D. and Muylaert, K., 2014. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research65, pp.186-202.  DOI: https://doi.org/10.1016/j.watres.2014.07.025.
Markou, G., Vandamme, D., Muylaert, K. 2014. Microalgae and cyanobacterial cultivation: the supply of nutrients, Water Research, 65(supplement C): 186-202.
Min, M., Wang, L., Li, Y., Mohr, M.J., Hu, B., Zhou, W., Chen, P. and Ruan, R., 2011. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied biochemistry and biotechnology, 165, pp.123-137. DOI: https://doi.org/10.1007/s12010-011-9238-7.
Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Zhou, W., Chen, P., Ruan, R., Micheal, J. 2011. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied Biochemistry and Biotechnology, 165(1), 123-137.
Mohammadi, M., Mowla, D., Esmaeilzadeh, F. and Ghasemi, Y., 2018. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. Journal of Environmental Chemical Engineering6(2), pp.2812-2820. DOI: https://doi.org/10.1016/j.jece.2018.04.037.
Moondra, N., Jariwala, N.D. and Christian, R.A., 2020. Sustainable treatment of domestic wastewater through microalgae. International journal of phytoremediation22(14), pp.1480-1486. DOI: https://doi.org/10.1080/15226514.2020.1782829.
Moondra, N., Jariwala, N. D., Christian, R. A. 2020. Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22(14), 1480-1486.
Mostafaei, H., Samimi, A., Shokrollahzadeh, S., Karamad, S. and Sheikhinejad, A., 2023. Nutrient removal from raw municipal wastewater using Chlorella vulgaris microalgae. Advances in Environmental Technology9(1), pp.47-57. DOI: 10.22104/aet.2023.5811.1601.
 Mostafaei, H., Samimi, A., Shokrollahzadeh, S., Karamad Yazdanabad, S., Sheikhinejad, A. 2023. Nutrien removal from raw municipal wastewater using Chlorella vulgaris microalgae, Advances in Environmental Technology, 1, 47-57
Nagarajan, D., Lee, D.J., Chen, C.Y. and Chang, J.S., 2020. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource technology302, p.122817. DOI: https://doi.org/10.1016/j.biortech.2020.122817.
 Nagarajan, D., Lee, D-J., Chen, Ch-Y., Chang, J.Sh. 2020. Resource recovery from wastewater using microalgae-based approaches: A circular bioeconomy perspective (review). Bioresource Technology, 302, 122817. 
Otondo, A., Kokabian, B., Stuart-Dahl, S. and Gude, V.G., 2018. Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgarisJournal of Environmental Chemical Engineering6(2), pp.3213-3222. DOI: https://doi.org/10.1016/j.jece.2018.04.064.
Otondo, A., Kokabian, B., Stuart-Dahl, S., Gude, V. G. 2018. Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of Environmental Chemical Engineering, 6(2), 3213-22.
Perez-Garcia, O., Escalante, F.M., De-Bashan, L.E. and Bashan, Y., 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research45(1), pp.11-36. DOI: https://doi.org/10.1016/j.watres.2010.08.037.
Perez-Garcia, O., Escalante, F.M.E., de–Bashan, L.E., Bashan, Y. 2011. Heterotrophic culture of microalgae: metabolism and potential products, Water Research, 45(1): 11-36.
Rada-Ariza, A.M., Lopez-Vazquez, C.M., Van der Steen, N.P. and Lens, P.N.L., 2017. Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology245, pp.81-89. DOI: https://doi.org/10.1016/j.biortech.2017.08.019.
Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N., Lens, P. 2017. Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology, 245, 81-89.
Rasoul-Amini, S., Montazeri-Najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., Mobasher, M.A. and Ghasemi, Y., 2014. Removal of nitrogen and phosphorus from wastewater using microalgae free cells in a bath culture system. Biocatalysis and Agricultural Biotechnology3(2), pp.126-131. DOI: 10.1016/j.bcab.2013.09.003.  
Rippka, R., 1988. [1] Isolation and purification of cyanobacteria. Methods in enzymology167, pp.3-27. DOI: https://doi.org/10.1016/0076-6879(88)67004-2.
Rippka, R.1988. Isolation and purification of cyanobacteria. Methods in Enzymology, 167, 3-27.
Satpal, S. and Khambete, A.K., 2016. Waste water treatment using micro-algae—a review paper. International Journal of Engineering Technology, Management and Applied Science, 4(2), pp.188-192.
Satpal, S., Khambete, A. K. 2016. Wastewater treatment using micro-algae -A review paper. International Journal of Engineering Technology Management and Applied Sciences, 4(2), 188-192
Soltani, N., Khavari-Nejad, R.A., Yazdi, M.T., Shokravi, S. and Fernández-Valiente, E., 2006. Variation of nitrogenase activity, photosynthesis and pigmentation of the cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH values. World Journal of Microbiology and Biotechnology22, pp.571-576. DOI: https://doi.org/10.1007/s11274-005-9073-5. Soltani, N, Khavari-Nejad, RA., Tabatabaei, M., Shokravi, Sh., Valiente, EF. 2006. Variation of nitrogenase activity, photosynthesis, and pigmentation of cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH. World Journal of Microbiology and Biotechnology. 22, 571-576.
Sood, A., Renuka, N., Prasanna, R. and Ahluwalia, A.S., 2015. Cyanobacteria as potential options for wastewater treatment. Phytoremediation: Management of Environmental Contaminants, Volume 2, pp.83-93. DOI: https://doi.org/10.1007/978-3-319-10969-5_8.
Sood, A., Renuka, N., Prasanna, R. and Ahluwalia, A.S., 2015. Cyanobacteria as potential options for wastewater treatment. Phytoremediation: Management of Environmental Contaminants, Volume 2, pp.83-93. DOI: 10.1007/978-3-319-10969-5_8
Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R. and Newman, L. eds., 2014. Phytoremediation: Management of Environmental Contaminants, Volume 1 (Vol. 1). Springer.
Spennati, E., Mirizadeh, S., Casazza, A.A., Solisio, C. and Converti, A., 2021. Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater. Algal Research, 60, p.102519.  DOI: https://doi.org/10.1016/j.algal.2021.102519.
Spennati, E., Mirizadeh. S., Casazza, A. A., Solisio, C., Converti, A. 2021. Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater. Algal Research, 60, 102519. DOI: 10.1016/j.algal.2021.102519
Torres-Franco, A., Passos, F., Figueredo, C., Mota, C. and Muñoz, R., 2021. Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance. Reviews in Environmental Science and Bio/Technology20, pp.209-235. DOI: https://doi.org/10.1007/s11157-020-09556-8.
Wang, L., Liu, J., Zhao, Q., Wei, W. and Sun, Y., 2016. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae, and combination systems. Bioresource Technology211, pp.1-5. DOI: https://doi.org/10.1016/j.biortech.2016.03.048.
Yadav, G., Dash, S.K. and Sen, R., 2019. A biorefinery for valorization of industrial wastewater and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration, and algal biomass production. Science of the Total Environment, 688, pp.129-135. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.024.
Ziganshina, E.E., Bulynina, S.S. and Ziganshin, A.M., 2021. Assessment of Chlorella sorokiniana growth in anaerobic digester effluent. Plants, 10(3), p.478. DOI: https://doi.org/10.3390/plants10030478.