Aditya, L., Mahlia, T.I., Nguyen, L.N., Vu, H.P. and Nghiem, L.D., 2022. Microalgae-bacteria consortium for wastewater treatment and biomass production.
Science of the total environment, 838, p.155871. DOI:
https://doi.org/10.1016/j.scitotenv.2022.155871.
Ajala, S.O. and Alexander, M.L., 2020. Assessment of
Chlorella vulgaris, Scenedesmus obliquus, and
Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater.
International Journal of Energy and Environmental Engineering,
11(3), pp.311-326. DOI:
https://doi.org/10.1007/s40095-019-00333-0.
Al-Jabri, H., Das, P., Khan, S., Thaher, M. and AbdulQuadir, M., 2021. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review.
Water,
13(1), p.27. DOI:
https://doi.org/10.3390/w13010027.
Belcher, H. and Swale, E., 1982. Culturing algae. A guide for schools and colleges. Institute of Terrestrial Ecology. Belcher, H. 1982. Culturing algae, a guide for schools and colleges. Tilus Wilson & Son LTD.
Benítez, M.B., Champagne, P., Ramos, A., Torres, A.F. and Ochoa-Herrera, V., 2019. Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environmental technology, 40(22), pp.2977-2985. DOI: doi/abs/10.1080/09593330.2018.1459874.
Benítez, M. B., Champagne, P., Ramos, A., Torres, A. F., Ochoa-Herrera, V. 2019. Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environmental Technology, 40(22), 2977-85
Boonchai, R., Seo, G.T. and Seong, C.Y., 2012. Microalgae photobioreactor for nitrogen and phosphorus removal from wastewater of a sewage treatment plant. International journal of bioscience, biochemistry and bioinformatics, 2(6), p.407. DOI: 10.7763/IJBBB.2012.V2.143. Boonchai, R., Seo, G., Park, D., Seong, C. 2012. Microalgae photobioreactor for nitrogen and phosphorus removal from wastewater of a sewage treatment plant. International Journal of Bioscience, Biochemistry and Bioinformatics, 2, 407-410.
Chen, Z., Xiao, Y., Liu, T., Yuan, M., Liu, G., Fang, J. and Yang, B., 2021. Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms, 9(12), p.2469. DOI: https://doi.org/10.3390/microorganisms9122469.
Chen, Z., Xiao, Y., Liu, T., Yuan, M., Liu, G., Fang, J., Yang, Bo. 2021. Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms, 9(12), 2469.
Do, J.M., Jo, S.W., Kim, I.S., Na, H., Lee, J.H., Kim, H.S. and Yoon, H.S., 2019. A feasibility study of wastewater treatment using domestic microalgae and analysis of biomass for potential applications. Water, 11(11), p.2294. DOI: https://doi.org/10.3390/w11112294.
Do, J.-Mi, Jo, S.-W., Kim, I.-S., Na, H., Lee, J.H., Kim, H.S. 2019. A feasibility study of wastewater treatment using domestic microalgae and analysis of biomass for potential applications. Water,11, 2294.
Foladori, P., Petrini, S. and Andreottola, G., 2018. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters.
Chemical Engineering Journal,
345, pp.507-516. DOI:
https://doi.org/10.1016/j.cej.2018.03.178.
Foladori, P., Petrini, S., Andreottola, G. 2018. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516.
Gonçalves, A. L., Pires, J. C., Simões, M. 2017. A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-15.
Vo, H.N.P., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Chen, Z., Wang, X.C., Chen, R. and Zhang, X., 2020. Microalgae for saline wastewater treatment: a critical review. Critical Reviews in Environmental Science and Technology, 50(12), pp.1224-1265. DOI: https://doi.org/10.1080/10643389.2019.1656510.
Hoang Nhat, V, Ngo, HH, Guo, W, Chang, SW, Nguyen, DD, Chen, Z., Chen, R., Zhang, X. 2019. Microalgae for saline wastewater treatment: a critical review. Critical Reviews in Environmental Science and Technology. DOI: DOI.org/10.1080/10643389. 2019.1656510.
Iranshahi, S., Nejadsattari, T., Soltani, N., Shokravi, S. and Dezfulian, M., 2014. The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Science. 13 (4), pp.907-917. Iranshahi, Sh., Nejadsattari, T., Soltani, N., Shokravi, Sh., Dezfulian, M. 2014. The effect of salinity on morphological and molecular characters and physiological response of Nostoc sp. ISC 101. Iranian Journal of Fisheries Science . 13 (4): 907-917.
Ji, B. and Liu, Y., 2021. Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment.
Acs Es&T Water, 1(12), pp.2459-2469.DOI:
https://doi.org/10.1021/acsestwater.1c00303.
Ji, B., Liu, Y. 2021. Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment. ACS EST Water, 1(12), 2459-2469.
Kaushik, B.D. 1987.
Laboratory methods for blue-green algae. Associated Publishing Company. Khaldi, H., Maatoug, M., Dube, C.S., Ncube, M., Tandlich, R., Heilmeier, H., Laubscher, R.K. and Dellal, A., 2017. Efficiency of wastewater treatment by a mixture of sludge and microalgae.
Journal of fundamental and applied sciences,
9(3), pp.1454-1472..
DOI
:10.4314/jfas.v9i3.13.
Khaldi, H., Maatoug, M., Dube, C.S., Ncube, M., Tandlich, R., Heilmeier, H., Della, A., Laubscher, R. K. 2017. Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of Fundamental and Applied Sciences, 9(3), 1454-1572.
Khan, S.R., Sharma, B., Chawla, P.A. and Bhatia, R., 2022. Inductively coupled plasma optical emission spectrometry (ICP-OES): a powerful analytical technique for elemental analysis.
Food Analytical Methods, pp.1-23.
https://doi.org/10.1007/s12161-021-02148-4.
Khan, S.R., Sharma, B., Chawla, P.A. 2022. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): A Powerful Analytical Technique for Elemental Analysis. Food Analysis Methods 15, 666–688. DOI: https://doi.org/10.1007/s12161-021-02148-4.
Kim, J., Lingaraju, B.P., Rheaume, R., Lee, J.Y. and Siddiqui, K.F., 2010. Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Science and Technology, 15(4), pp.391-396. DOI: 10.1016/S1007-0214(10)70078-X.
Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., Siddiqui, K. F. 2010. Removal of ammonia from wastewater effluent by
Chlorella vulgaris.
Tsinghua Science and Technology, 15(4), 391-6. Krustok, I., Odlare, M., Truu, J. and Nehrenheim, E., 2016. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.
Bioresource Technology,
202, pp.238-243. DOI:
https://doi.org/10.1016/j.biortech.2015.12.020.
Krustok, I., Odlare, M., Truu, J., Nehrenheim, E. 2016. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243.
Kurniawati, P., Gusrianti, R., Dwisiwi, B.B., Purbaningtias, T.E. and Wiyantoko, B., 2017, December. Verification of spectrophotometric method for nitrate analysis in water samples. In AIP Conference Proceedings (Vol. 1911, No. 1). AIP Publishing. DOI: doi.org/10.10631/1.5016005.
Kurniawati, P., Gusrianti, R., Dwisiwi, B., Purbaningtias, T.E., Wiyantoko, B. 2024. Verification of spectrophotometric methods for nitrate analysis in water samples, AIP Con.proc., 1911-020012-1-020012-6. DOI: doi.org/10.10631/1.5016005.
Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M., and Chen, P., 2019. Microalgae-based wastewater treatment for nutrients recovery: A review.
Bioresource technology, 291, p.121934. DOI:
https://doi.org/10.1016/j.biortech.2019.121934.
Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, Shuhao, Cheng, p., Liu, J., Addy, M., Chen, P., Chen, D., Ruan, R. 2019. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934.
Markou, G., Vandamme, D., Muylaert, K. 2014. Microalgae and cyanobacterial cultivation: the supply of nutrients, Water Research, 65(supplement C): 186-202.
Min, M., Wang, L., Li, Y., Mohr, M.J., Hu, B., Zhou, W., Chen, P. and Ruan, R., 2011. Cultivating
Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
Applied biochemistry and biotechnology, 165, pp.123-137. DOI:
https://doi.org/10.1007/s12010-011-9238-7.
Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Zhou, W., Chen, P., Ruan, R., Micheal, J. 2011. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied Biochemistry and Biotechnology, 165(1), 123-137.
Mohammadi, M., Mowla, D., Esmaeilzadeh, F. and Ghasemi, Y., 2018. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study.
Journal of Environmental Chemical Engineering,
6(2), pp.2812-2820. DOI:
https://doi.org/10.1016/j.jece.2018.04.037.
Moondra, N., Jariwala, N.D. and Christian, R.A., 2020. Sustainable treatment of domestic wastewater through microalgae. International journal of phytoremediation, 22(14), pp.1480-1486. DOI: https://doi.org/10.1080/15226514.2020.1782829.
Moondra, N., Jariwala, N. D., Christian, R. A. 2020. Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22(14), 1480-1486.
Mostafaei, H., Samimi, A., Shokrollahzadeh, S., Karamad, S. and Sheikhinejad, A., 2023. Nutrient removal from raw municipal wastewater using
Chlorella vulgaris microalgae.
Advances in Environmental Technology,
9(1), pp.47-57. DOI:
10.22104/aet.2023.5811.1601.
Mostafaei, H., Samimi, A., Shokrollahzadeh, S., Karamad Yazdanabad, S., Sheikhinejad, A. 2023. Nutrien removal from raw municipal wastewater using Chlorella vulgaris microalgae, Advances in Environmental Technology, 1, 47-57
Nagarajan, D., Lee, D.J., Chen, C.Y. and Chang, J.S., 2020. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective.
Bioresource technology,
302, p.122817. DOI:
https://doi.org/10.1016/j.biortech.2020.122817.
Nagarajan, D., Lee, D-J., Chen, Ch-Y., Chang, J.Sh. 2020. Resource recovery from wastewater using microalgae-based approaches: A circular bioeconomy perspective (review). Bioresource Technology, 302, 122817.
Otondo, A., Kokabian, B., Stuart-Dahl, S. and Gude, V.G., 2018. Energetic evaluation of wastewater treatment using microalgae,
Chlorella vulgaris.
Journal of Environmental Chemical Engineering,
6(2), pp.3213-3222. DOI:
https://doi.org/10.1016/j.jece.2018.04.064.
Otondo, A., Kokabian, B., Stuart-Dahl, S., Gude, V. G. 2018. Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of Environmental Chemical Engineering, 6(2), 3213-22.
Perez-Garcia, O., Escalante, F.M., De-Bashan, L.E. and Bashan, Y., 2011. Heterotrophic cultures of microalgae: metabolism and potential products.
Water Research,
45(1), pp.11-36. DOI:
https://doi.org/10.1016/j.watres.2010.08.037.
Perez-Garcia, O., Escalante, F.M.E., de–Bashan, L.E., Bashan, Y. 2011. Heterotrophic culture of microalgae: metabolism and potential products, Water Research, 45(1): 11-36.
Rada-Ariza, A.M., Lopez-Vazquez, C.M., Van der Steen, N.P. and Lens, P.N.L., 2017. Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors.
Bioresource Technology,
245, pp.81-89. DOI:
https://doi.org/10.1016/j.biortech.2017.08.019.
Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N., Lens, P. 2017. Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology, 245, 81-89.
Rasoul-Amini, S., Montazeri-Najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., Mobasher, M.A. and Ghasemi, Y., 2014. Removal of nitrogen and phosphorus from wastewater using microalgae free cells in a bath culture system. Biocatalysis and Agricultural Biotechnology, 3(2), pp.126-131. DOI: 10.1016/j.bcab.2013.09.003.
Rippka, R.1988. Isolation and purification of cyanobacteria. Methods in Enzymology, 167, 3-27.
Satpal, S. and Khambete, A.K., 2016. Waste water treatment using micro-algae—a review paper. International Journal of Engineering Technology, Management and Applied Science, 4(2), pp.188-192.
Satpal, S., Khambete, A. K. 2016. Wastewater treatment using micro-algae -A review paper. International Journal of Engineering Technology Management and Applied Sciences, 4(2), 188-192
Soltani, N., Khavari-Nejad, R.A., Yazdi, M.T., Shokravi, S. and Fernández-Valiente, E., 2006. Variation of nitrogenase activity, photosynthesis and pigmentation of the cyanobacterium
Fischerella ambigua strain FS18 under different irradiance and pH values.
World Journal of Microbiology and Biotechnology,
22, pp.571-576. DOI:
https://doi.org/10.1007/s11274-005-9073-5. Soltani, N, Khavari-Nejad, RA., Tabatabaei, M., Shokravi, Sh., Valiente, EF. 2006. Variation of nitrogenase activity, photosynthesis, and pigmentation of cyanobacterium
Fischerella ambigua strain FS18 under different irradiance and pH.
World Journal of Microbiology and Biotechnology. 22, 571-576.
Sood, A., Renuka, N., Prasanna, R. and Ahluwalia, A.S., 2015. Cyanobacteria as potential options for wastewater treatment.
Phytoremediation: Management of Environmental Contaminants, Volume 2, pp.83-93. DOI:
https://doi.org/10.1007/978-3-319-10969-5_8.
Sood, A., Renuka, N., Prasanna, R. and Ahluwalia, A.S., 2015. Cyanobacteria as potential options for wastewater treatment. Phytoremediation: Management of Environmental Contaminants, Volume 2, pp.83-93. DOI: 10.1007/978-3-319-10969-5_8
Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R. and Newman, L. eds., 2014. Phytoremediation: Management of Environmental Contaminants, Volume 1 (Vol. 1). Springer.
Spennati, E., Mirizadeh, S., Casazza, A.A., Solisio, C. and Converti, A., 2021.
Chlorella vulgaris and
Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater.
Algal Research, 60, p.102519. DOI:
https://doi.org/10.1016/j.algal.2021.102519.
Spennati, E., Mirizadeh. S., Casazza, A. A., Solisio, C., Converti, A. 2021. Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater. Algal Research, 60, 102519. DOI: 10.1016/j.algal.2021.102519
Torres-Franco, A., Passos, F., Figueredo, C., Mota, C. and Muñoz, R., 2021. Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance.
Reviews in Environmental Science and Bio/Technology,
20, pp.209-235. DOI:
https://doi.org/10.1007/s11157-020-09556-8.
Wang, L., Liu, J., Zhao, Q., Wei, W. and Sun, Y., 2016. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae, and combination systems.
Bioresource Technology,
211, pp.1-5. DOI:
https://doi.org/10.1016/j.biortech.2016.03.048.
Yadav, G., Dash, S.K. and Sen, R., 2019. A biorefinery for valorization of industrial wastewater and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration, and algal biomass production.
Science of the Total Environment, 688, pp.129-135. DOI:
https://doi.org/10.1016/j.scitotenv.2019.06.024.
Ziganshina, E.E., Bulynina, S.S. and Ziganshin, A.M., 2021. Assessment of
Chlorella sorokiniana growth in anaerobic digester effluent.
Plants, 10(3), p.478. DOI:
https://doi.org/10.3390/plants10030478.