Abd El-Hameed, M.M., Abuarab, M.E., Mottaleb, S.A., El-Bahbohy, R.M. and Bakeer, G.A., 2018. Comparative studies on growth and Pb (II) removal from aqueous solution by Nostoc muscorum and Anabaena variabilis. Ecotoxicology and Environmental Safety, 165, pp.637-644. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.103
Abioye, O.P., Ezugwu, B.U., Aransiola, S.A. and Ojeba, M.I., 2020. Phycoremediation of water contaminated with arsenic (As), cadmium (Cd) and lead (Pb) from a mining site in Minna, Nigeria. European Journal of Biological Research, 10(1), pp.35-44.
Ahad, R.I.A., Ahad, R.I.A., Syiem, M.B. and Rai, A.N., 2021. Cd (II) sorption by Nostoc sp. JRD1: Kinetic, thermodynamic, and isotherm studies. Environmental Technology & Innovation, 21, p.101283.
Ahammed, M.S., Baten, M.A., Ali, M.A., Mahmud, S., Islam, M.S., Thapa, B. Sen, Islam, M.A., Miah, M.A. and Tusher, T.R., 2023. Comparative evaluation of Chlorella vulgaris and Anabaena variabilis for phycoremediation of polluted river water: Spotlighting heavy metals detoxification. Biology (Basel), 12, p. 675. DOI: https://doi.org/10.3390/biology12050675
Ahmad, W., Alharthy, R.D., Zubair, M., Ahmed, M., Hameed, A. and Rafique, S., 2021. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), p.17006. DOI: https://doi.org/10.1038/s41598-021-94616-4
Ahuja, P., Gupta, R. and Saxena, R.K., 1999. Zn2+ biosorption by Oscillatoria anguistissima. Process Biochemistry, 34(1), pp.77-85. DOI: https://doi.org/10.1016/S0032-9592(98)00072-7
Ajayan, K.V., Selvaraju, M. and Thirugnanamoorthy, K., 2011. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents. Pakistan Journal of Biological Sciences, 14(16), p.805. DOI: https://doi.org/10.3923/pjbs.2011.805.811
Ajayan, K.V., Selvaraju, M., Unnikannan, P. and Sruthi, P., 2015. Phycoremediation of tannery wastewater using microalgae Scenedesmus species. International Journal of Phytoremediation, 17(10), pp.907-916. DOI: https://doi.org/10.1080/15226514.2014.989313
Akbarzadeh, N. and Shariati, M., 2014. Aluminum remediation from medium by Dunaliella. Ecological Engineering, 67, pp.76-79. DOI: https://doi.org/10.1016/j.ecoleng.2014.03.014
Akhtar, N., 2004. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. Journal of Hazardous Materials, 108, pp.85-94. DOI: https://doi.org/10.1016/j.jhazmat.2004.01.002
Akhtar, N., Iqbal, J. and Iqbal, M., 2004. Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. Journal of hazardous materials, 108(1-2), pp.85-94. DOI: https://doi.org/10.1016/S1001-0742(08)60036-4
Al-Jabri, H., Das, P., Khan, S., Thaher, M. and AbdulQuadir, M., 2020. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water, 13(1), p.27. DOI: https://doi.org/10.3390/w13010027
Alayi, M., Mohammadi, A., Mashhadi, H. and Mahmoudnia, F., 2021. Investigating the capability of chromium heavy metal removal and biodiesel production by three species of algae: Scenedesmus acutus, Scenedesmus incrass atulus, Scenedesmus obliquus. Annals of the Romanian Society for Cell Biology, 25, pp.21127-21138.
Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R. and Wang, M.-Q., 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9, p.42. DOI: https://doi.org/10.3390/toxics9030042
Alhajeri, N.S., Tawfik, A., Elsamadony, M., Al-Fadhli, F.M. and Meng, F., 2024. Synergistic algal/bacterial interaction in membrane bioreactor for detoxification of 1,2-dichloroethane-rich petroleum wastewater. Journal of Hazardous Materials, 470, p.134125. DOI: https://doi.org/10.1016/j.jhazmat.2024.134125
Alori, E.T., Gabasawa, A.I., Elenwo, C.E. and Agbeyegbe, O.O., 2022. Bioremediation techniques as affected by limiting factors in soil environment. Frontiers in Soil Science, 2. DOI: https://doi.org/10.3389/fsoil.2022.937186
Amit, Chandra, R., Ghosh, U.K. and Nayak, J.K., 2017. Phycoremediation potential of marine microalga Tetraselmis indica on secondary treated domestic sewage for nutrient removal and biodiesel production. Environmental Science and Pollution Research, 24, pp.20868-20875. DOI: https://doi.org/10.1007/s11356-017-9734-6
Anacleto, P., van den Heuvel, F.H.M., Oliveira, C., Rasmussen, R.R., Fernandes, J.O., Sloth, J.J., Barbosa, V., Alves, R.N., Marques, A. and Cunha, S.C., 2017. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment. Food and Chemical Toxicology, 104, pp.95-108. DOI: https://doi.org/10.1016/j.fct.2017.01.030
Anae, J., Ahmad, N., Kumar, V., Thakur, V.K., Gutierrez, T., Yang, X.J., Cai, C., Yang, Z. and Coulon, F., 2021. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Science of the Total Environment, 767, p.144351. DOI: https://doi.org/10.1016/j.scitotenv.2020.144351
Apiratikul, R. and Pavasant, P., 2006. Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera. Chemical Engineering Journal, 119, pp.135-145. DOI: https://doi.org/10.1016/j.cej.2006.02.010
Arora, N., Gulati, K., Patel, A., Pruthi, P.A., Poluri, K.M. and Pruthi, V., 2017. A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Research, 24, pp.29-39. DOI: https://doi.org/10.1016/j.algal.2017.03.012
Atoku, D.I., Ojekunle, O.Z., Taiwo, A.M. and Shittu, O.B., 2021. Evaluating the efficiency of Nostoc commune, Oscillatoria limosa and Chlorella vulgaris in a phycoremediation of heavy metals contaminated industrial wastewater. Scientific African, 12, p.e00817. DOI: https://doi.org/10.1016/j.sciaf.2021.e00817
Bakatula, E.N., Cukrowska, E.M., Weiersbye, I.M., Mihaly-Cozmuta, L., Peter, A. and Tutu, H., 2014. Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). Journal of Geochemical Exploration, 144, pp.492-503. DOI: https://doi.org/10.1016/j.gexplo.2014.02.017
Bala, S., Garg, D., Thirumalesh, B.V., Sharma, M., Sridhar, K., Inbaraj, B.S. and Tripathi, M., 2022. Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics, 10, p.484. DOI: https://doi.org/10.3390/toxics10080484
Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Siva, R., Singh, R.K. and Akthar, M.A., 2014. Arthrospira ( Spirulina ) species as bioadsorbents for lead, chromium, and cadmium – a comparative study. CLEAN – Soil, Air, Water, 42, pp.1790-1797. DOI: https://doi.org/10.1002/clen.201300478
Balaji, S., Kalaivani, T., Rajasekaran, C., Siva, R., Shalini, M., Das, R., Madnokar, V. and Dhamorikar, P., 2015. Bioremediation potential of Arthrospira platensis ( Spirulina ) against chromium(VI). CLEAN – Soil, Air, Water, 43, pp.1018-1024. DOI: https://doi.org/10.1002/clen.201400133
Balzano, S., Sardo, A., Blasio, M., Chahine, T.B., Dell’Anno, F., Sansone, C. and Brunet, C., 2020. Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Frontiers in Microbiology, 11, p.517. DOI: https://doi.org/10.3389/fmicb.2020.00517
Bauenova, M.O., Sadvakasova, A.K., Mustapayeva, Z.O., Kokociński, M., Zayadan, B.K., Wojciechowicz, M.K., Balouch, H., Akmukhanova, N.R., Alwasel, S. and Allakhverdiev, S.I., 2021. Potential of microalgae Parachlorella kessleri Bh-2 as bioremediation agent of heavy metals cadmium and chromium. Algal Research, 59, p.102463. DOI: https://doi.org/10.1016/j.algal.2021.102463
Bayramoğlu, G., Tuzun, I., Celik, G., Yilmaz, M. and Arica, M.Y., 2006. Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 81, pp.35-43. DOI: https://doi.org/10.1016/j.minpro.2006.06.002
Bishnoi, N.R., Pant, A. and Nagpal, G., 2004. Biosorption of copper from aqueous solution using algal biomass. Journal of Scientific & Industrial Research (India), 63, pp.813-816.
Blaby-Haas, C.E. and Merchant, S.S., 2012. The ins and outs of algal metal transport. Biochimica et Biophysica Acta - Molecular Cell Research, 1823, pp.1531-1552. DOI: https://doi.org/10.1016/j.bbamcr.2012.04.010
Boivin, M.E.Y., Greve, G.D., García-Meza, J.V., Massieux, B., Sprenger, W., Kraak, M.H.S., Breure, A.M., Rutgers, M. and Admiraal, W., 2007. Algal–bacterial interactions in metal contaminated floodplain sediments. Environmental Pollution, 145, pp.884-894. DOI: https://doi.org/10.1016/j.envpol.2006.05.003
Bon, I.C., Salvatierra, L.M., Lario, L.D., Morató, J. and Pérez, L.M., 2021. Prospects in cadmium-contaminated water management using free-living cyanobacteria (Oscillatoria sp.). Water, 13, p.542. DOI: https://doi.org/10.3390/w13040542
Boopathy, R., 2000. Factors limiting bioremediation technologies. Bioresource Technology, 74, pp.63-67. DOI: https://doi.org/10.1016/S0960-8524(99)00144-3
Brake, S.S., Hasiotis, S.T. and Dannelly, H.K., 2004. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiology Journal, 21, pp.331-340. DOI: https://doi.org/10.1080/01490450490454074
Briffa, J., Sinagra, E. and Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6, p.e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691
Brinza, L., Geraki, K., Cojocaru, C., Holdt, S.L. and Neamtu, M., 2020. Baltic Fucus vesiculosus as potential bio-sorbent for Zn removal: Mechanism insight. Chemosphere, 238, p.124652. DOI: https://doi.org/10.1016/j.chemosphere.2019.124652
Brinza, L., Nygård, C.A., Dring, M.J., Gavrilescu, M. and Benning, L.G., 2009. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource Technology, 100, pp.1727-1733. DOI: https://doi.org/10.1016/j.biortech.2008.09.041
Bte Jais, N.M., Bte Radin Mohamed, R.M.S., Wan Mohamad Apandi, W.A. and Matias Peralta, H.M., 2015. Removal of nutrients and selected heavy metals in wet market wastewater by using microalgae Scenedesmus sp. Applied Mechanics & Materials, pp.773-774, 1210-1214. DOI: https://doi.org/10.4028/www.scientific.net/AMM.773-774.1210
Bwapwa, J.K., Jaiyeola, A.T. and Chetty, R., 2017. Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24, pp.62-70. DOI: https://doi.org/10.1016/j.sajce.2017.06.005
Cai, Z., Karunakaran, E. and Pandhal, J., 2024. Bottom-up construction and screening of algae-bacteria consortia for pollutant biodegradation. Frontiers in Microbiology, 15. DOI: https://doi.org/10.3389/fmicb.2024.1349016
Cardoso, S.L., Moino, B.P., Costa, C.S., da Silva, M.G. and Vieira, M.G., 2016. Evaluation of metal affinity of Ag+, Cd 2+, Cr 3+, Cu 2+, Ni 2+, Zn 2+ and Pb 2+ in residue of double alginate extraction from Sargassum filipendula seaweed. Chemical Engineering Transactions, 52, pp.1027-1032.
Carrilho, E.N.V.M. and Gilbert, T.R., 2000. Assessing metal sorption on the marine alga Pilayella littoralis. Journal of Environmental Monitoring, 2, pp.410-415. DOI: https://doi.org/10.1039/b004128i
Çeleklı, A. and Bulut, H., 2020. Biochemical and morphological responses to cadmium-induced oxidative stress in Cladophora glomerata. Turkish Journal of Botany, 44, pp.222-231. DOI: https://doi.org/10.3906/bot-2001-12
Chen, J.-Z., Tao, X.-C., Xu, J., Zhang, T. and Liu, Z.-L., 2005. Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochemistry, 40, pp.3675-3679. DOI: https://doi.org/10.1016/j.procbio.2005.03.066
Chugh, M., Kumar, L., Shah, M.P. and Bharadvaja, N., 2022. Algal bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7, p.100129. DOI: https://doi.org/10.1016/j.nexus.2022.100129
Ciarkowska, K., 2018. Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland). Environmental Science and Pollution Research, 25, pp.13709-13718. DOI: https://doi.org/10.1007/s11356-018-1589-y
Coelho, Luciene M., Rezende, H.C., Coelho, Luciana M., de Sousa, P.A.R., Melo, D.F.O. and Coelho, N.M.M., 2015. Bioremediation of polluted waters using microorganisms, in: Advances in Bioremediation of Wastewater and Polluted Soil. InTech. DOI: https://doi.org/10.5772/60770
Dahmen-Ben Moussa, I., Athmouni, K., Chtourou, H., Ayadi, H., Sayadi, S., and Dhouib, A., 2018. Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution. Journal of Applied Phycology, 30, pp.931-941. DOI: https://doi.org/10.1007/s10811-017-1315-z
Davis, T., Volesky, B. and Vieira, R.H.S., 2000. Sargassum seaweed as biosorbent for heavy metals. Water Research, 34, pp.4270-4278. DOI: https://doi.org/10.1016/S0043-1354(00)00177-9
Demey, H., Vincent, T. and Guibal, E., 2018. A novel algal-based sorbent for heavy metal removal. Chemical Engineering Journal, 332, pp.582-595. DOI: https://doi.org/10.1016/j.cej.2017.09.083
Deng, J., Fu, D., Hu, W., Lu, X., Wu, Y. and Bryan, H., 2020. Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. Bioresource Technology, 303, p.122963. DOI: https://doi.org/10.1016/j.biortech.2020.122963
Deng, L., Su, Y., Su, H., Wang, X. and Zhu, X., 2007a. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143, pp.220-225. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.009
Deng, L., Su, Y., Su, H., Wang, X. and Zhu, X., 2006. Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects. Adsorption, 12, pp.267-277. DOI: https://doi.org/10.1007/s10450-006-0503-y
Deng, L., Zhu, X., Su, Y., Su, H. and Wang, X., 2008. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chinese Journal of Oceanology and Limnology, 26, pp.45-49. DOI: https://doi.org/10.1007/s00343-008-0045-0
Deng, L., Zhu, X., Wang, X., Su, Y. and Su, H., 2007b. Biosorption of copper(II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation, 18, pp.393-402. DOI: https://doi.org/10.1007/s10532-006-9074-6
Di Capua, F., 2013. Nitrogen removal from low pH and heavy metal contaminated mine wastewater.
Diaconu, M., Soreanu, G., Balan, C.D., Buciscanu, I.I., Maier, V. and Cretescu, I., 2023. Study of Spirulina platensis (Arthrospira) development under the heavy metals influence, as a potential promoter of wastewater remediation. Water, 15, p.3962. DOI: https://doi.org/10.3390/w15223962
Dixit, S. and Singh, D.P., 2014. An evaluation of phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. Journal of Applied Phycology, 26, pp.1331-1342. DOI: https://doi.org/10.1007/s10811-013-0145-x
El-Bestawy, E.A., El-Salam, A.Z.A. and Mansy, A.E.-R.H., 2007. Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. Int. Biodeterioration & Biodegradation, 59, pp.180-192. DOI: https://doi.org/10.1016/j.ibiod.2006.12.005
El-Hameed, M.M.A., Abuarab, M.E., Al-Ansari, N., Mottaleb, S.A., Bakeer, G.A., Gyasi-Agyei, Y. and Mokhtar, A., 2021. Phycoremediation of contaminated water by cadmium (Cd) using two cyanobacterial strains (Trichormus variabilis and Nostoc muscorum). Environmental Sciences Europe, 33, p.135. DOI: https://doi.org/10.1186/s12302-021-00573-0
El-Naggar, N.E.-A., Hamouda, R.A., Saddiq, A.A. and Alkinani, M.H., 2021. Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Scientific Reports, 11, p.3555. DOI: https://doi.org/10.1038/s41598-021-82827-8
El-Sheekh, M.M., El-Shouny, W.A., Osman, M.E.H. and El-Gammal, E.W.E., 2005. Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environmental Toxicology and Pharmacology, 19, pp.357-365. DOI: https://doi.org/10.1016/j.etap.2004.09.005
Elbaz-Poulichet, F., 2000. Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto river, Spain). Water Research, 34, pp.3222-3230. DOI: https://doi.org/10.1016/S0043-1354(00)00073-7
Elleuch, J., Ben Amor, F., Chaaben, Z., Frikha, F., Michaud, P., Fendri, I. and Abdelkafi, S., 2021. Zinc biosorption by Dunaliella sp. AL-1: Mechanism and effects on cell metabolism. Science of the Total Environment, 773, p.145024. DOI: https://doi.org/10.1016/j.scitotenv.2021.145024
Esmaeili, A. and Aghababai Beni, A., 2018. Optimization and design of a continuous biosorption process using brown algae and chitosan/PVA nano-fiber membrane for the removal of nickel by a new biosorbent. International Journal of Environmental Science and Technology, 15, pp.765-778. DOI: https://doi.org/10.1007/s13762-017-1409-9
Esteves, A.J.P., Valdman, E. and Leite, S.G.F., 2000. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnology Letters, 22, pp.499-502. DOI: https://doi.org/10.1023/A:1005608701510
Fajardo, C., De Donato, M., Carrasco, R., Martínez‐Rodríguez, G., Mancera, J.M. and Fernández‐Acero, F.J., 2020. Advances and challenges in genetic engineering of microalgae. Reviews in Aquaculture, 12, pp.365-381. DOI: https://doi.org/10.1111/raq.12322
Fard, R.F., Azimi, A.A. and Bidhendi, G.R.N., 2011. Batch kinetics and isotherms for biosorption of cadmium onto biosolids. Desalination and Water Treatment, 28, pp.69-74. DOI: https://doi.org/10.5004/dwt.2011.2203
Flouty, R. and Estephane, G., 2012. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. Journal of Environmental Management, 111, pp.106-114. DOI: https://doi.org/10.1016/j.jenvman.2012.06.042
Fourest, E. and Volesky, B., 1996. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental Science & Technology, 30, pp.277-282. DOI: https://doi.org/10.1021/es950315s
Fu, P. and Secundo, F., 2016. Algae and their bacterial consortia for soil bioremediation. Chemical Engineering Transaction, 49, pp.427-432.
Gao, J. and Chi, J., 2015. Biodegradation of phthalate acid esters by different marine microalgal species. Marine Pollution Bulletin, 99, pp.70-75. DOI: https://doi.org/10.1016/j.marpolbul.2015.07.061
Gavrilescu, M., 2010. Environmental biotechnology: Achievements, opportunities and challenges. Dyn. Biochem. Process Biotechnol. Molecular Biology, 4, pp.1-36.
Ghimire, K.N., Inoue, K., Ohto, K. and Hayashida, T., 2008. Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresource Technology, 99, pp.32-37. DOI: https://doi.org/10.1016/j.biortech.2006.11.057
Gomes, M.P., Kochi, L.Y., Freitas, P.L., Figueredo, C.C. and Juneau, P., 2021. Periphytic algae and cyanobacteria from the Rio Doce Basin respond differently to metals and salinity, showing different potential for bioremediation. Plants, 10, p.2349. DOI: https://doi.org/10.3390/plants10112349
Gündoğdu, A. and Türk Çulha, S., 2023. The use of algae in removal of heavy metal ions from wastewater, in: Pioneer and Contemporary Studies in Agriculture, Forest and Water Issues. Duvar Publishing. DOI: https://doi.org/10.59287/pcsafwi.50
Gupta, V.K. and Rastogi, A., 2009. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163, pp.396-402. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.104
Gupta, V.K., Rastogi, A. and Nayak, A., 2010. Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342, pp.533-539. DOI: https://doi.org/10.1016/j.jcis.2009.10.074
Han, X., Gong, Y.-F., Wong, Y.-S. and Tam, N.F.Y., 2014. Cr(III) removal by a microalgal isolate, Chlorella miniata: effects of nitrate, chloride and sulfate. Ecotoxicology, 23, pp.742-748. DOI: https://doi.org/10.1007/s10646-014-1178-x
Han, X., Wong, Y.S., Wong, M.H. and Tam, N.F.Y., 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. Journal of Hazardous Materials, 146, pp.65-72. DOI: https://doi.org/10.1016/j.jhazmat.2006.11.053
Hazarika, J., Pakshirajan, K., Sinharoy, A. and Syiem, M.B., 2015. Bioremoval of Cu(II), Zn(II), Pb(II) and Cd(II) by Nostoc muscorum isolated from a coal mining site. Journal of Applied Phycology 27, pp.1525-1534. DOI: https://doi.org/10.1007/s10811-014-0475-3
He, Z., Siripornadulsil, S., Sayre, R.T., Traina, S.J. and Weavers, L.K., 2011. Removal of mercury from sediment by ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii). Chemosphere, 83, pp.1249-1254. DOI: https://doi.org/10.1016/j.chemosphere.2011.03.004
Henriques, B., Lopes, C.B., Figueira, P., Rocha, L.S., Duarte, A.C., Vale, C., Pardal, M.A. and Pereira, E., 2017. Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. Chemosphere, 171, pp.208-222. DOI: https://doi.org/10.1016/j.chemosphere.2016.12.086
Hernández, E. and Olguín, E.J., 2002. Biosorption of heavy metals influenced by the chemical composition of Spirulina sp. ( Arthrospira ) biomass. Environmental Technology, 23, pp.1369-1377. DOI: https://doi.org/10.1080/09593332508618442
Herrero, M. and Stuckey, D.C., 2015. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, pp.119-128. DOI: https://doi.org/10.1016/j.chemosphere.2014.10.033
Hlihor, R.-M., Apostol, L.-C. and Gavrilescu, M., 2017. Environmental bioremediation by biosorption and bioaccumulation: Principles and applications, in: Enhancing Cleanup of Environmental Pollutants. Springer International Publishing, Cham, pp.289-315. DOI: https://doi.org/10.1007/978-3-319-55426-6_14
Hong, Y.-W., Yuan, D.-X., Lin, Q.-M. and Yang, T.-L., 2008. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin, 56, pp.1400-1405. DOI: https://doi.org/10.1016/j.marpolbul.2008.05.003
Huang, W.-J., Wu, C.-C. and Chang, W.-C., 2014. Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environmental Monitoring and Assessment, 186, pp.805-814. DOI: https://doi.org/10.1007/s10661-013-3418-6
Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X. and He, Z., 2018. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, pp.159-168. DOI: https://doi.org/10.1016/j.jenvman.2017.10.072
Husien, S., Labena, A., El-Belely, E.F., Mahmoud, H.M. and Hamouda, A.S., 2019. Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: live planktonic cells. Water Practice & Technology, 14, pp.515-529. DOI: https://doi.org/10.2166/wpt.2019.034
Ibuot, A., Dean, A.P., McIntosh, O.A. and Pittman, J.K., 2017. Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Research, 24, pp.89-96. DOI: https://doi.org/10.1016/j.algal.2017.03.002
Inthorn, D., Sidtitoon, N., Silapanuntakul, S. and Incharoensakdi, A., 2002. Sorption of mercury, cadmium and lead by microalgae. ScienceAsia, 28, pp.253-261. DOI: https://doi.org/10.2306/scienceasia1513-1874.2002.28.253
Izydorczyk, G., Mikula, K., Skrzypczak, D., Moustakas, K., Witek-Krowiak, A. and Chojnacka, K., 2021. Potential environmental pollution from copper metallurgy and methods of management. Environmental Research 197, p.111050. DOI: https://doi.org/10.1016/j.envres.2021.111050
Jafari, N. and Senobari, Z., 2012. Removal of Pb (II) ions from aqueous solutions by Cladophora rivularis (Linnaeus) Hoek. Science World Journal, 2012, pp.1-6. DOI: https://doi.org/10.1100/2012/793606
Jayashree, S., Thangaraju, N. and Gnanadoss, J.J., 2012. Toxic effects of chromium on the aquatic cyanobacterium Oscillatoria sp and removal of chromium by biosorption. Journal of Experimental Sciences, 3, pp.28-34.
Ji, L., Xie, S., Feng, J., Li, Y. and Chen, L., 2012. Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal of Applied Phycology, 24, pp.979-983. DOI: https://doi.org/10.1007/s10811-011-9721-0
Kafil, M., Berninger, F., Koutra, E. and Kornaros, M., 2022. Utilization of the microalga Scenedesmus quadricauda for hexavalent chromium bioremediation and biodiesel production. Bioresource Technology, 346, p.126665. DOI: https://doi.org/10.1016/j.biortech.2021.126665
Kandasamy, S., Narayanan, M., He, Z., Liu, G., Ramakrishnan, M., Thangavel, P., Pugazhendhi, A., Raja, R. and Carvalho, I.S., 2021. Current strategies and prospects in algae for remediation and biofuels: An overview. Biocatalysis and Agricultural Biotechnology 35, p.102045. DOI: https://doi.org/10.1016/j.bcab.2021.102045
Kaplan, D., 2013. Absorption and adsorption of heavy metals by microalgae, in: Handbook of Microalgal Culture. John Wiley & Sons, Ltd, Oxford, UK, pp.602-611. DOI: https://doi.org/10.1002/9781118567166.ch32
Karaca, M., 2008. Biosorption of aqueus Pb2+, Cd2+, and Ni2+ ions by Dunaliella salina, Oocystis sp., Porphyridium cruentum, and Scenedesmus protuberans prior to atomic spectrometric determination . Izmir Institute of Technology , Izmir.
Khan, M.M., 2022. Hydrological study of the catchment area and its delineation (Using ArcGIS Software).
Khan, S., Ullah, A., Ayaz, T., Aziz, A., Aman, K., Habib, M., Yilmaz, S., Farid, A., Yasmin, H. and Ali, Q., 2023. Phycoremediation of industrial wastewater using Vaucheria debaryana and Cladophora glomerata. Environmental Monitoring and Assessment, 195, p.825. DOI: https://doi.org/10.1007/s10661-023-11357-9
Khani, M.H., 2011. Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics. Environmental Science and Pollution Research, 18, pp.1593-1605. DOI: https://doi.org/10.1007/s11356-011-0518-0
Khatiwada, B., Hasan, M.T., Sun, A., Kamath, K.S., Mirzaei, M., Sunna, A. and Nevalainen, H., 2020. Proteomic response of Euglena gracilis to heavy metal exposure – Identification of key proteins involved in heavy metal tolerance and accumulation. Algal Research, 45, p.101764. DOI: https://doi.org/10.1016/j.algal.2019.101764
Klimmek, S., Stan, H.-J., Wilke, A., Bunke, G. and Buchholz, R., 2001. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environmental Science & Technology, 35, pp.4283-4288. DOI: https://doi.org/10.1021/es010063x
Kothari, R., Pandey, A., Ahmad, S., Singh, H.M., Pathak, V. V., Tyagi, V. V., Kumar, K. and Sari, A., 2022. Utilization of Chlorella pyrenoidosa for remediation of common effluent treatment plant wastewater in coupling with co-relational study: An experimental approach. Bulletin of Environmental Contamination and Toxicology, 108, pp.507-517. DOI: https://doi.org/10.1007/s00128-021-03292-7
Kratochvil, D., Fourest, E. and Volesky, B., 1995. Biosorption of copper by Sargassum fluitans biomass in fixed-bed column. Biotechnology Letters, 17, pp.777-782. DOI: https://doi.org/10.1007/BF00130368
Kumar, J.I.N. and Oommen, C., 2012. Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. Journal of Environmental Biology 33, pp.27-31.
Kumar, N., Hans, S., Verma, R. and Srivastava, A., 2020. Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River. Water Science and Engineering, 13, pp.214-222. DOI: https://doi.org/10.1016/j.wse.2020.09.005
Kumari, S., Tyagi, M. and Jagadevan, S., 2019. Mechanistic removal of environmental contaminants using biogenic nano-materials. International Journal of Environmental Science and Technology, 16, pp.7591-7606. DOI: https://doi.org/10.1007/s13762-019-02468-3
Kuritz, T. and Wolk, C.P., 1995. Use of filamentous cyanobacteria for biodegradation of organic pollutants. Applied and Environmental Microbiology 61, pp.234-238. DOI: https://doi.org/10.1128/aem.61.1.234-238.1995
Lakshmi, D., Radha, K., Azeez, T. and Munisamy, S., 2023. A review on alginate-nanoparticle as a potential tool for managing water pollution. Engineering and Technology Journal, 0, pp.1-10. DOI: https://doi.org/10.30684/etj.2023.143276.1574
Lee, C., Li, X., Shi, W., Cheung, S. and Thornton, I., 2006. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, pp.45-61. DOI: https://doi.org/10.1016/j.scitotenv.2005.03.024
Leusch, A., Holan, Z.R. and Volesky, B., 1995. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically‐reinforced biomass of marine algae. Journal of Chemical Technology & Biotechnology, 62, pp.279-288. DOI: https://doi.org/10.1002/jctb.280620311
Li, C., Zheng, C., Fu, H., Zhai, S., Hu, F., Naveed, S., Zhang, C. and Ge, Y., 2021. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. Chemosphere, 274, p.129771. DOI: https://doi.org/10.1016/j.chemosphere.2021.129771
Liang, S., Kang, Y., Zeng, L., Qin, Y., Wang, L., Zhang, Q. and Luo, J., 2017. How Chlorella sorokiniana and its high tolerance to Pb might be a potential Pb biosorbent. Polish Journal of Environmental Studies, 26, pp.1139-1146. DOI: https://doi.org/10.15244/pjoes/67532
Liyanage, L.M.M., Lakmali, W.G.M., Athukorala, S.N.P. and Jayasundera, K.B., 2020. Application of live Chlorococcum aquaticum biomass for the removal of Pb(II) from aqueous solutions. Journal of Applied Phycology, 32, pp.4069-4080. DOI: https://doi.org/10.1007/s10811-020-02242-w
López-Miranda, J.L., Silva, R., Molina, G.A., Esparza, R., Hernandez-Martinez, A.R., Hernández-Carteño, J. and Estévez, M., 2020. Evaluation of a dynamic bioremediation system for the removal of metal ions and toxic dyes using Sargassum Spp. Journal of Marine Science and Engineering 8, p.899. DOI: https://doi.org/10.3390/jmse8110899
Lu, J., Ma, Y., Xing, G., Li, W., Kong, X., Li, J., Wang, L., Yuan, H. and Yang, J., 2019. Revelation of microalgae’s lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environmental Pollution, 250, pp.186-195. DOI: https://doi.org/10.1016/j.envpol.2019.04.018
Luo, F., Liu, Y., Li, X., Xuan, Z. and Ma, J., 2006. Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere, 64, pp.1122-1127. DOI: https://doi.org/10.1016/j.chemosphere.2005.11.076
Mahdavi, H., Prasad, V., Liu, Y. and Ulrich, A.C., 2015. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae–bacteria consortium. Bioresource Technology, 187, pp.97-105. DOI: https://doi.org/10.1016/j.biortech.2015.03.091
Mahmood, T., Hussain, N., Shahbaz, A., Mulla, S.I., Iqbal, H.M.N. and Bilal, M., 2023. Sustainable production of biofuels from the algae-derived biomass. Bioprocess and Biosystems Engineering, 46, pp.1077-1097. DOI: https://doi.org/10.1007/s00449-022-02796-8
Mahmood, Z., Zahra, S., Iqbal, M., Raza, M.A. and Nasir, S., 2017. Comparative study of natural and modified biomass of Sargassum sp. for removal of Cd2+ and Zn2+ from wastewater. Applied Water Science, 7, pp.3469-3481. DOI: https://doi.org/10.1007/s13201-017-0624-3
Malik, B. and Kaur Sandhu, K., 2023. Occurrence and impact of heavy metals on environment. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2023.01.317
Mane, P.C. and Bhosle, A.B., 2012. Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. International Journal of Environmental Research. pp.571-576.
Manzoor, F., Karbassi, A. and Golzary, A., 2020. Removal of heavy metal contaminants from wastewater by using Chlorella vulgaris Beijerinck: A review. Current Environmental Management, 6, pp.174-187. DOI: https://doi.org/10.2174/2212717806666190716160536
Marella, T.K., López-Pacheco, I.Y., Parra-Saldívar, R., Dixit, S. and Tiwari, A., 2020. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Science of the Total Environment, 724, p.137960. DOI: https://doi.org/10.1016/j.scitotenv.2020.137960
Mata, Y.N., Blázquez, M.L., Ballester, A., González, F. and Muñoz, J.A., 2008. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 158, pp.316-323. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.084
Matheickal, J.T. and Yu, Q., 1996. Biosorption of lead from aqueous solutions by marine algae. Water Science & Technology, 34. DOI: https://doi.org/10.1016/S0273-1223(96)00780-9
Mathimani, T., Alshiekheid, M.A., Sabour, A., Le, T. and Xia, C., 2024. Appraising the phycoremediation potential of cyanobacterial strains Phormidium and Oscillatoria for nutrient removal from textile wastewater (TWW) and synchronized biodiesel production from TWW-tolerant biomass. Environmental Research, 241, p.117628. DOI: https://doi.org/10.1016/j.envres.2023.117628
Medeiros, I.D., Mathieson, A.C. and Rajakaruna, N., 2017. Heavy metals in seaweeds from a polluted estuary in coastal Maine. Rhodora, 119, pp.201-211. DOI: https://doi.org/10.3119/16-25
Megharaj, M., Boul, H.L. and Thiele, J.H., 1999. Effects of DDT and its metabolites on soil algae and enzymatic activity. Biology and Fertility of Soils, 29, pp.130-134. DOI: https://doi.org/10.1007/s003740050534
Megharaj, M., Kantachote, D., Singleton, I. and Naidu, R., 2000. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environmental Pollution, 109, pp.35-42. DOI: https://doi.org/10.1016/S0269-7491(99)00231-6
Megharaj, M., Madhavi, D.R., Sreenivasulu, C., Umamaheswari, A. and Venkateswarlu, K., 1994. Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bulletin of Environmental Contamination and Toxicology, 53, pp.292-297. DOI: https://doi.org/10.1007/BF00192047
Megharaj, M., Venkateswarlu, K. and Rao, A.S., 1987. Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bulletin of Environmental Contamination and Toxicology, 39, pp.251-256. DOI: https://doi.org/10.1007/BF01689414
Mehta, S.K. and Gaur, J.P., 2005. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, pp.113-152. DOI: https://doi.org/10.1080/07388550500248571
Mei, L., Xitao, X., Renhao, X. and Zhili, L., 2006. Effects of strontium-induced stress on marine microalgaePlatymonas subcordiformis (Chlorophyta: Volvocales). Chinese Journal of Oceanology and Limnology, 24, pp.154-160. DOI: https://doi.org/10.1007/BF02842815
Mofeed, J., 2017. Biosorption of heavy metals from aqueous industrial effluent by non-living biomass of two marine green algae Ulva lactuca and Dunaliella salina as biosorpents. Catrina: the International Journal of Environmental Sciences, 16, pp.43-52. DOI: https://doi.org/10.21608/cat.2017.14267
Monteiro, C.M., Castro, P.M.L. and Malcata, F.X., 2009. Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World Journal of Microbiology & Biotechnology, 25, pp.1573-1578. DOI: https://doi.org/10.1007/s11274-009-0046-y
Monteiro, C.M., Castro, P.M.L. and Xavier Malcata, F., 2011. Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environmental Chemistry Letters, 9, pp.169-176. DOI: https://doi.org/10.1007/s10311-009-0258-2
Morsy, F.M., Hassan, S.H.A. and Koutb, M., 2011. Biosorption of Cd(II) and Zn(II) by Nostoc commune : Isotherm and kinetics studies. CLEAN – Soil, Air, Water, 39, pp.680-687. DOI: https://doi.org/10.1002/clen.201000312
Muñoz, R. and Guieysse, B., 2006. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40, pp.2799-2815. DOI: https://doi.org/10.1016/j.watres.2006.06.011
Naseema Rasheed, R., Pourbakhtiar, A., Mehdizadeh Allaf, M., Baharlooeian, M., Rafiei, N., Alishah Aratboni, H., Morones-Ramirez, J.R. and Winck, F.V., 2023. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Frontiers in Bioengineering and Biotechnology, 11. DOI: https://doi.org/10.3389/fbioe.2023.1193424
Navarro, J. and Caipang, C.M., 2024. Bioremediation of oil spills: Current status, challenges, and future prospects. Journal of Microbiology, Biotechnology and Food Sciences. p.e10450. DOI: https://doi.org/10.55251/jmbfs.10450
Novis, P.M. and Harding, J.S., 2007. Extreme Acidophiles. pp.443-463. DOI: https://doi.org/10.1007/978-1-4020-6112-7_24
Nuhoglu, Y., Malkoc, E., Gürses, A. and Canpolat, N., 2002. The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresource Technology, 85, pp.331-333. DOI: https://doi.org/10.1016/S0960-8524(02)00098-6
Omar, H.., 2002. Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. International Biodeterioration & Biodegradation, 50, pp.95-100. DOI: https://doi.org/10.1016/S0964-8305(02)00048-3
P.S, C., Sanyal, D., Dasgupta, S. and Banik, A., 2021. Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere, 269, p.128755. DOI: https://doi.org/10.1016/j.chemosphere.2020.128755
Pagnanelli, F., Esposito, A., Toro, L. and Vegliò, F., 2003. Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Research, 37, pp.627-633. DOI: https://doi.org/10.1016/S0043-1354(02)00358-5
Papageorgiou, S.K., Kouvelos, E.P. and Katsaros, F.K., 2008. Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination, 224, pp.293-306. DOI: https://doi.org/10.1016/j.desal.2007.06.011
Pawlik-Skowrońska, B., 2001. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquatic Toxicology, 52, pp.241-249. DOI: https://doi.org/10.1016/S0166-445X(00)00144-2
Peña-Castro, J.M., Martı́nez-Jerónimo, F., Esparza-Garcı́a, F. and Cañizares-Villanueva, R.O., 2004. Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresource Technology, 94, pp.219-222. DOI: https://doi.org/10.1016/j.biortech.2003.12.005
Petrovič, A. and Simonič, M., 2016. Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. International Journal of Environmental Science and Technology, 13, pp.1761-1780. DOI: https://doi.org/10.1007/s13762-016-1015-2
Pradhan, B., Bhuyan, P.P., Nayak, R., Patra, S., Behera, C., Ki, J.-S., Ragusa, A., Lukatkin, A.S. and Jena, M., 2022. Microalgal phycoremediation: A glimpse into a sustainable environment. Toxics, 10, p.525. DOI: https://doi.org/10.3390/toxics10090525
Pradhan, S. and Rai, L.C., 2001. Copper removal by immobilized Microcystis aeruginosa in continuous flow columns at different bed heights: study of the adsorption/desorption cycle. World Journal of Microbiology & Biotechnology, 17, pp.829-832. DOI: https://doi.org/10.1023/A:1013800800176
Puente-Sánchez, F., Díaz, S., Penacho, V., Aguilera, A. and Olsson, S., 2018. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila. Aquatic Toxicology, 200, pp.62-72. DOI: https://doi.org/10.1016/j.aquatox.2018.04.020
Purushanahalli Shivagangaiah, C., Sanyal, D., Dasgupta, S. and Banik, A., 2021. Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae, Scenedesmus acutus and Chlorella pyrenoidosa. Physiologia Plantarum, p.13368. DOI: https://doi.org/10.1111/ppl.13368
Qiu, C.E., Kuang, Q.J., Bi, Y.H., Liu, G.X. and Hu, Z.Y., 2006. Response of Chlorococcum sp. AZHB to copper and cadmius stress. Bulletin of Environmental Contamination and Toxicology 77, pp.772-778. DOI: https://doi.org/10.1007/s00128-006-1130-8
Rahman, M.M., Alam, K. and Velayutham, E., 2021. Is industrial pollution detrimental to public health? Evidence from the world’s most industrialised countries. BMC Public Health, 21, 1175. DOI: https://doi.org/10.1186/s12889-021-11217-6
Rai, U.N., Dubey, S., Shukla, O.P., Dwivedi, S. and Tripathi, R.D., 2008. Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources. Environmental Monitoring and Assessment, 144, pp.469-481. DOI: https://doi.org/10.1007/s10661-007-0010-y
Rajamani, S., Siripornadulsil, S., Falcao, V., Torres, M., Colepicolo, P. and Sayre, R., 2007. Phycoremediation of heavy metals using transgenic microalgae, in: Transgenic Microalgae as Green Cell Factories. Springer New York, New York, NY, pp.99-109. DOI: https://doi.org/10.1007/978-0-387-75532-8_9
Rakic, I., Kevresan, Z., Kovac, R., Kravic, S., Svircev, Z., Djurovic, A. and Stojanovic, Z., 2023. Bioaccumulation and biosorption study of heavy metals removal by cyanobacteria Nostoc sp. Chemical Industry & Chemical Engineering Quarterly, 29, pp.291-298. DOI: https://doi.org/10.2298/CICEQ220511002R
Ram, H., Kaur, A., Gandass, N., Singh, S., Deshmukh, R., Sonah, H. and Sharma, T.R., 2019. Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS One, 14, p.e0217360. DOI: https://doi.org/10.1371/journal.pone.0217360
Ramírez-Rodríguez, A.E., Bañuelos-Hernández, B., García-Soto, M.J., Govea-Alonso, D.G., Rosales-Mendoza, S., Alfaro de la Torre, M.C., Monreal-Escalante, E. and Paz-Maldonado, L.M.T., 2019. Arsenic removal using Chlamydomonas reinhardtii modified with the gene acr3 and enhancement of its performance by decreasing phosphate in the growing media. International Journal of Phytoremediation, 21, pp.617-623. DOI: https://doi.org/10.1080/15226514.2018.1546274
Rangsayatorn, N., Upatham, E.S., Kruatrachue, M., Pokethitiyook, P. and Lanza, G.R., 2002. Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environmental Pollution, 119, pp.45-53. DOI: https://doi.org/10.1016/S0269-7491(01)00324-4
Ranjbar, S. and Malcata, F.X., 2022. Is genetic engineering a route to enhance microalgae-mediated bioremediation of heavy metal-containing effluents? Molecules, 27, p.1473. DOI: https://doi.org/10.3390/molecules27051473
Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D. and Harvey, N.W., 2008. Removal of lead (Pb2+) by the cyanobacterium Gloeocapsa sp. Bioresource Technology, 99, pp.5650-5658. DOI: https://doi.org/10.1016/j.biortech.2007.10.056
Ravindran, B., Gupta, S., Cho, W.-M., Kim, J., Lee, S., Jeong, K.-H., Lee, D. and Choi, H.-C., 2016. Microalgae potential and multiple roles—current progress and future prospects—An overview. Sustainability, 8, p.1215. DOI: https://doi.org/10.3390/su8121215
Razaviarani, V., Arab, G., Lerdwanawattana, N. and Gadia, Y., 2022. Algal biomass dual roles in phycoremediation of wastewater and production of bioenergy and value-added products. International Journal of Environmental Science and Technology. DOI: https://doi.org/10.1007/s13762-022-04696-6
Razzak, S.A., Faruque, M.O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S.M.Z. and Hossain, M.M., 2022. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, p.100168. DOI: https://doi.org/10.1016/j.envadv.2022.100168
Rosakis, A. and Köster, W., 2005. Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues. BioMetals, 18, pp.107-120. DOI: https://doi.org/10.1007/s10534-004-2481-4
Ross, M.E., Stanley, M.S., Day, J.G. and Semião, A.J.C., 2021. Removal of metals from aqueous solutions using dried Cladophora parriaudii of varying biochemical composition. Journal of Environmental Management, 290, p.112620. DOI: https://doi.org/10.1016/j.jenvman.2021.112620
Roy, A.S., Hazarika, J., Manikandan, N.A., Pakshirajan, K. and Syiem, M.B., 2015. Heavy metal removal from multicomponent system by the cyanobacterium Nostoc muscorum: Kinetics and interaction study. Applied Biochemistry and Biotechnology, 175, pp.3863-3874. DOI: https://doi.org/10.1007/s12010-015-1553-y
Ryu, B.-G., Kim, W., Nam, K., Kim, S., Lee, B., Park, M.S. and Yang, J.-W., 2015. A comprehensive study on algal–bacterial communities shift during thiocyanate degradation in a microalga-mediated process. Bioresource Technology 191, pp.496-504. DOI: https://doi.org/10.1016/j.biortech.2015.03.136
Rzymski, P., Poniedzialek, B., Niedzielski, P., Tabaczewski, P. and Wiktorowicz, K., 2014. Cadmium and lead toxicity and bioaccumulation in Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 8, pp.427-432. DOI: https://doi.org/10.1007/s11783-013-0566-4
Samal, D.P.K., Sukla, L.B., Pattanaik, A. and Pradhan, D., 2020. Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Materials Today: Proceedings, 30, pp.346-350. DOI: https://doi.org/10.1016/j.matpr.2020.02.165
Sargın, İ., Arslan, G. and Kaya, M., 2016. Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. Reactive & Functional Polymers, 98, pp.38-47. DOI: https://doi.org/10.1016/j.reactfunctpolym.2015.11.007
Seepersaud, M.A., Ramkissoon, A., Seecharan, S., Powder-George, Y.L. and Mohammed, F.K., 2018. Environmental monitoring of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in Sargassum filipendula and Sargassum vulgare along the eastern coastal waters of Trinidad and Tobago, West Indies. Journal of Applied Phycology, 30, pp.2143-2154. DOI: https://doi.org/10.1007/s10811-017-1372-3
Shukla, D., Vankar, P.S. and Srivastava, S.K., 2012. Bioremediation of hexavalent chromium by a cyanobacterial mat. Applied Water Science, 2, pp.245-251. DOI: https://doi.org/10.1007/s13201-012-0044-3
Singh, S.K., 2019. An analysis of role of microorganisms in bioremediation. Journal of Emerging Technologies & Innovative Research, 6, pp.212-217.
Singh, S.K., Bansal, A., Jha, M.K. and Dey, A., 2012. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresource Technology, 104, pp.257-265. DOI: https://doi.org/10.1016/j.biortech.2011.11.044
Singhal, M., Jadhav, S., Sonone, S.S., Sankhla, M.S. and Kumar, R., 2021. Microalgae based sustainable bioremediation of water contaminated by pesticides. Biointerface Research in Applied Chemistry, 12, pp.149-169. DOI: https://doi.org/10.33263/BRIAC121.149169
Soeprobowati, T.R. and Hariyati, R., 2013. Bioaccumulation of Pb, Cd, Cu, and Cr by Porphyridium cruentum (S.F. Gray) Nägeli. International Journal of Marine Science. DOI: https://doi.org/10.5376/ijms.2013.03.0027
Spain, O., Plöhn, M. and Funk, C., 2021. The cell wall of green microalgae and its role in heavy metal removal. Physiologia Plantarum, 173, pp.526-535. DOI: https://doi.org/10.1111/ppl.13405
Su, M., Dell’Orto, M., Scaglia, B., D’Imporzano, G., Bani, A. and Adani, F., 2022. Growth performance, biochemical composition and nutrient recovery ability of twelve microalgae consortia isolated from various local organic wastes grown on nano-filtered pig slurry. Molecules, 27, p.422. DOI: https://doi.org/10.3390/molecules27020422
Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. and Naidu, R., 2013. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, pp.59-72. DOI: https://doi.org/10.1016/j.envint.2012.10.007
Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. and Naidu, R., 2011. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 29, pp.896-907. DOI: https://doi.org/10.1016/j.biotechadv.2011.07.009
Tahira, S., Khan, S., Samrana, S., Shahi, L., Ali, I., Murad, W., Rehman, Z. ur and Azizullah, A., 2019. Bio-assessment and remediation of arsenic (arsenite As-III) in water by Euglena gracilis. Journal of Applied Phycology, 31, pp.423-433. DOI: https://doi.org/10.1007/s10811-018-1593-0
Tamil Selvan, S., Velramar, B., Ramamurthy, D., Balasundaram, S. and Sivamani, K., 2020. Pilot scale wastewater treatment, CO 2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. International Journal of Phytoremediation, 22, pp.1462-1479. DOI: https://doi.org/10.1080/15226514.2020.1782828
Torres, E.M., 2016. Microalgae sorption of ten individual heavy metals and their effects on growth and lipid accumulation. Utah State University.
Torres, M.J., Bellido-Pedraza, C.M. and Llamas, A., 2024. Applications of the microalgae Chlamydomonas and its bacterial consortia in detoxification and bioproduction. Life, 14, p.940. DOI: https://doi.org/10.3390/life14080940
Touliabah, H.E.-S., El-Sheekh, M.M., Ismail, M.M. and El-Kassas, H., 2022. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules, 27, p.1141. DOI: https://doi.org/10.3390/molecules27031141
Tüzün, İ., Bayramoğlu, G., Yalçın, E., Başaran, G., Çelik, G. and Arıca, M.Y., 2005. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. Journal of Environmental Management, 77, pp.85-92. DOI: https://doi.org/10.1016/j.jenvman.2005.01.028
Upadhyay, A.K., Singh, L., Singh, R., Singh, D.P. and Saxena, G., 2022. Bioaccumulation and toxicity of As in the alga Chlorococcum sp.: Prospects for As bioremediation. Bulletin of Environmental Contamination and Toxicology, 108, pp.500-506. DOI: https://doi.org/10.1007/s00128-020-02964-0
V.R., M., Y.A.R., L., Lange, L.C., and L.V.S., S., 2019. Simultaneous biosorption of Cd(II), Ni(II) and Pb(II) onto a brown macroalgae Fucus vesiculosus: Mono- and multi-component isotherms, kinetics and thermodynamics. Journal of Environmental Management, 251, p.109587. DOI: https://doi.org/10.1016/j.jenvman.2019.109587
Valiente Moro, C., Bricheux, G., Portelli, C. and Bohatier, J., 2012. Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environmental Toxicology and Chemistry, 31, pp.778-786. DOI: https://doi.org/10.1002/etc.1749
Verma, A., Kumar, Shashi, Balomajumder, C. and Kumar, Surendra, 2018. Efficacy of Sargassum filipendula for the removal of Pb2+, Cd2+ and Ni2+ ions from aqueous solution: a comparative study. Desalination and Water Treatment, 129, pp.216-226. DOI: https://doi.org/10.5004/dwt.2018.22788
Verma, A., Kumar, Shashi and Kumar, Surendra, 2016. Biosorption of lead ions from the aqueous solution by Sargassum filipendula: Equilibrium and kinetic studies. Journal of Environmental Chemical Engineering, 4, pp.4587-4599. DOI: https://doi.org/10.1016/j.jece.2016.10.026
Verma, J.P. and Jaiswal, D.K., 2016. Book review: Advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology, 6. DOI: https://doi.org/10.3389/fmicb.2015.01555
Vijayaraghavan, K., Jegan, J., Palanivelu, K. and Velan, M., 2005. Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chemical Engineering Journal, 106, pp.177-184. DOI: https://doi.org/10.1016/j.cej.2004.12.039
Vilar, V.J.P., Botelho, C.M.S. and Boaventura, R.A.R., 2005. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 40, pp.3267-3275. DOI: https://doi.org/10.1016/j.procbio.2005.03.023
Volesky, B. and Holan, Z.R., 1995. Biosorption of heavy metals. Biotechnol. Prog. 11, 235–250. https://doi.org/10.1021/bp00033a001
Volland, S., Lütz, C., Michalke, B. and Lütz-Meindl, U., 2012. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquatic Toxicology, 109, pp.59-69. DOI: https://doi.org/10.1016/j.aquatox.2011.11.013
Vymazal, J., 1990. Uptake of heavy metals by Cladophora glomerata. Acta Hydrochimica et Hydrobiologica, 18, pp.657-665. DOI: https://doi.org/10.1002/aheh.19900180605
Vymazal, J., 1984. Short-term uptake of heavy metals by periphyton algae. Hydrobiologia, 119, pp.171-179. DOI: https://doi.org/10.1007/BF00015208
Wang, X., Ma, S. and Kong, F., 2024. Microalgae biotechnology: Methods and applications. Bioengineering, 11, p.965. DOI: https://doi.org/10.3390/bioengineering11100965
Wang, Z., Gui, H., Luo, Z., Zhen, Z., Yan, C. and Xing, B., 2019. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa. Environmental Pollution, 252, pp.1755-1763. DOI: https://doi.org/10.1016/j.envpol.2019.06.126
Webster, L.J., Villa-Gomez, D., Brown, R., Clarke, W. and Schenk, P.M., 2024. A synthetic biology approach for the treatment of pollutants with microalgae. Frontiers in Bioengineering and Biotechnology, 12. DOI: https://doi.org/10.3389/fbioe.2024.1379301
Winters, C., Guéguen, C. and Noble, A., 2017. Equilibrium and kinetic studies of Cu(II) and Ni(II) sorption on living Euglena gracilis. Journal of Applied Phycology, 29, pp.1391-1398. DOI: https://doi.org/10.1007/s10811-016-1040-z
Wong, J.P., Wong, Y. and Tam, N.F., 2000. Nickel biosorption by two chlorella species, C. vulgaris (a commercial species) and C. miniata (a local isolate). Bioresource Technology, 73, pp.133-137. DOI: https://doi.org/10.1016/S0960-8524(99)00175-3
Wu, J., Ma, L.-L. and Zeng, R.J., 2018. Role of extracellular polymeric substances in efficient chromium(VI) removal by algae-based Fe/C nano-composite. Chemosphere, 211, pp.608-616. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.186
Xiao, J., Chikanori, M., Yu, K.-F., Hideshi, S., Hideo, M. and He, P.-M., 2012. Biosorption of heavy metals onto nonliving Laminaria japonica. Water Science & Technology, 65, pp.1514-1520. DOI: https://doi.org/10.2166/wst.2012.042
Xiao, R., Ali, A., Wang, P., Li, R., Tian, X. and Zhang, Z., 2019. Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil. Chemosphere, 230, pp.510-518. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.121
Yamamoto, T., Goto, I., Kawaguchi, O., Minagawa, K., Ariyoshi, E. and Matsuda, O., 2008. Phytoremediation of shallow organically enriched marine sediments using benthic microalgae. Marine Pollution Bulletin, 57, pp.108-115. DOI: https://doi.org/10.1016/j.marpolbul.2007.10.006
Yan, H. and Pan, G., 2002. Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere, 49, pp.471-476. DOI: https://doi.org/10.1016/S0045-6535(02)00285-0
Yang, J., Cao, J., Xing, G. and Yuan, H., 2015. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource Technology, 175, pp.537-544. DOI: https://doi.org/10.1016/j.biortech.2014.10.124
Yeheyo, H.A., Ealias, A.M., George, G. and Jagannathan, U., 2024. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. Journal of Environmental Management, 363, p.121409. DOI: https://doi.org/10.1016/j.jenvman.2024.121409
Yen, H.-W., Chen, P.-W., Hsu, C.-Y. and Lee, L., 2017. The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions. Journal of the Taiwan Institute of Chemical Engineers, 74, pp.1-6. DOI: https://doi.org/10.1016/j.jtice.2016.08.017
Yin, P., Yu, Q., Lin, Z. and Kaewsarn, P., 2001. Biosorption and desorption of cadmium(II) by biomass of Laminaria japonica. Environmental Technology, 22, pp.509-514. DOI: https://doi.org/10.1080/09593332208618254
Yuan, X., Gao, X., Liu, C., Liang, W., Xue, H., Li, Z. and Jin, H., 2023. Application of nanomaterials in the production of biomolecules in microalgae: A review. Marine Drugs, 21, p.594. DOI: https://doi.org/10.3390/md21110594
Zaib, M., Athar, M.M., Saeed, A., Farooq, U., Salman, M. and Makshoof, M.N., 2016. Equilibrium, kinetic and thermodynamic biosorption studies of Hg(II) on red algal biomass of Porphyridium cruentum. Green Chemistry Letters and Reviews, 9, pp.179-189. DOI: https://doi.org/10.1080/17518253.2016.1185166
Zeng, G., He, Y., Liang, D., Wang, F., Luo, Y., Yang, H., Wang, Q., Wang, J., Gao, P., Wen, X., Yu, C. and Sun, D., 2022. Adsorption of heavy metal ions copper, cadmium and nickel by Microcystis aeruginosa. International Journal of Environmental Research and Public Health, 19, p.13867. DOI: https://doi.org/10.3390/ijerph192113867
Zhang, J. and Luo, X., 2022. Bioaccumulation characteristics and acute toxicity of uranium in Hydrodictyon reticulatum: An algae with potential for wastewater remediation. Chemosphere, 289, p.133189. DOI: https://doi.org/10.1016/j.chemosphere.2021.133189
Zhang, R., Richardson, J.J., Masters, A.F. and Maschmeyer, T., 2022. Removal of Pb 2+ from water using sustainable brown seaweed Phlorotannins. Langmuir, 38, pp.8324-8333. DOI: https://doi.org/10.1021/acs.langmuir.2c00849
Zhang, X., Zhao, X., Wan, C., Chen, B. and Bai, F., 2016. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Research, 16, pp.427-433. DOI: https://doi.org/10.1016/j.algal.2016.04.002
Zhou, G.-J., Peng, F.-Q., Zhang, L.-J. and Ying, G.-G., 2012. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environmental Science and Pollution Research, 19, pp.2918-2929. DOI: https://doi.org/10.1007/s11356-012-0800-9
Zinicovscaia, I., Cepoi, L., Povar, I., Chiriac, T., Rodlovskaya, E. and Culicov, O.A., 2018. Metal uptake from complex industrial effluent by cyanobacteria Arthrospira platensis. Water, Air, & Soil Pollution, 229, p.220. DOI: https://doi.org/10.1007/s11270-018-3873-3
Zornoza, R., Landi, L., Nannipieri, P. and Renella, G., 2009. A protocol for the assay of arylesterase activity in soil. Soil Biology and Biochemistry, 41, pp.659-662. DOI: https://doi.org/10.1016/j.soilbio.2009.01.003
Żukowska, J. and Biziuk, M., 2008. Methodological evaluation of method for dietary heavy metal intake. Journal of Food Science, 73, pp.R21-R29. DOI: https://doi.org/10.1111/j.1750-3841.2007.00648.x.