Synergistic Effects of Thyme Essential Oil and Thyme Honey on Biofilm Formation by Candida albicans

Document Type : Original Article

Authors

1 Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

2 Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

10.48308/pae.2025.237997.1097

Abstract

Candida albicans is a major pathogenic yeast responsible for numerous systemic infections. Its ability to form biofilms significantly complicates treatment, leading to high rates of treatment failure and mortality. This study investigates the synergistic effects of thyme essential oil and thyme monofloral honey on Candida albicans biofilm formation, exploring them as a potential natural therapeutic strategy. The inhibition of biofilm formation was assessed using a crystal violet microtiter plate assay. Various concentrations of thyme monofloral honey (100%, 75%, 50%, and 25% v/v) and thyme essential oil were tested both individually and in combination. A clinical isolate of Candida albicans served as the target organism for the study. The effectiveness of the treatments in inhibiting biofilm formation was measured, and fluorescent microscopy was employed to visualize the effects on yeast cell density and morphology. The results indicated a significant synergistic effect of combining thyme essential oil and honey, achieving the highest inhibition rate of 59% at the 75% concentration of honey and thyme essential oil, compared to individual treatment rates of 28% for thyme essential oil and 31% for honey alone. Microscopy imaging revealed a marked reduction in the density of Candida albicans cells and changes in cell morphology in treated samples, highlighting the effectiveness of the combined treatment in inhibiting biofilm formation.
The combined action of thyme essential oil's antimicrobial properties and the bioactive compounds found in thyme honey suggests a promising strategy for overcoming Candida albicans biofilm-associated infections. These findings support the exploration of natural antimicrobials as alternatives to synthetic antifungal agents, particularly in an era of rising antifungal resistance. Further research, including in vivo studies, is necessary to validate the clinical efficacy of these natural products against multidrug-resistant pathogens. 

Keywords


Alissandrakis, E., Tarantilis, P.A., Harizanis, P.C. and Polissiou, M., 2007. Comparison of the volatile composition in thyme honeys from several origins in Greece. Journal of Agricultural and Food Chemistry55(20), pp.8152-8157. DOI: 10.1021/jf071442y.
Alshaikh, N.A. and Perveen, K., 2021. Susceptibility of fluconazole-resistant Candida albicans to thyme essential oil. Microorganisms9(12), p.2454. DOI: 10.3390/microorganisms9122454.
Alves, M., Gonçalves, M.J., Zuzarte, M., Alves-Silva, J.M., Cavaleiro, C., Cruz, M.T. and Salgueiro, L., 2019. Unveiling the antifungal potential of two Iberian thyme essential oils: effect on C. albicans germ tube and preformed biofilms. Frontiers in Pharmacology10, p.446. DOI: 10.3389/fphar.2019.00446.
Assaggaf, H.M., Naceiri Mrabti, H., Rajab, B.S., Attar, A.A., Hamed, M., Sheikh, R.A., Omari, N.E., Menyiy, N.E., Belmehdi, O., Mahmud, S., and Alshahrani, M.M., 2022. Singular and combined effects of essential oil and honey of Eucalyptus globulus on anti-inflammatory, antioxidant, dermatoprotective, and antimicrobial properties: in vitro and in vivo findings. Molecules27(16), p.5121. DOI: 10.3390/molecules27165121.
Atriwal, T., Azeem, K., Husain, F.M., Hussain, A., Khan, M.N., Alajmi, M.F. and Abid, M., 2021. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Frontiers in Microbiology, 12, p.638609. DOI: 10.3389/fmicb.2021.638609.
Bhattacharya, S., Sae-Tia, S. and Fries, B.C., 2020. Candidiasis and mechanisms of antifungal resistance. Antibiotics, 9(6), p.312. DOI: 10.3390/antibiotics9060312.
Blankenship, J.R. and Mitchell, A.P., 2006. How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 9(6), pp.588-594. DOI: 10.1016/j.mib.2006.10.003.
Boukraâ, L., 2023. Honey in traditional and modern medicine. CRC Press.
 DOI: 10.1201/b15608.
Brown, G.D., Denning, D.W. and Levitz, S.M., 2012. Tackling human fungal infections. Science, 336(6082), pp.647-647. DOI: 10.1126/science.1222236.
Clinical and Laboratory Standards Institute, 2020. Performance standards for antimicrobial susceptibility testing. DOI: 10.1128/JCM.01864-19.
Enoch, D.A., Yang, H., Aliyu, S.H. and Micallef, C., 2016. The changing epidemiology of invasive fungal infections. Human Fungal Pathogen Identification: Methods and Protocols, pp.17-65. DOI: 10.1007/978-1-4939-6515-1_2.
Holubová, A., Chlupáčová, L., Krocová, J., Cetlová, L., Peters, L.J., Cremers, N.A. and Pokorná, A., 2023. The use of medical grade honey on infected chronic diabetic foot ulcers—a prospective case-control study. Antibiotics, 12(9), p.1364. DOI: 10.3390/antibiotics12091364.
Karabagias, I.K., Dimitriou, E., Kontakos, S. and Kontominas, M.G., 2016. Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. European Food Research and Technology, 242(8), pp.1201-1210. DOI: 10.1007/s00217-015-2624-6.
Köhler, J.R., Hube, B., Puccia, R., Casadevall, A. and Perfect, J.R., 2017. Fungi that infect humans. Microbiology Spectrum, 5(3), pp.10-1128. DOI: 10.1128/microbiolspec. funk-0014-2016.
Kowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A. and Fecka, I., 2020. Thymol and thyme essential oil—new insights into selected therapeutic applications. Molecules, 25(18), p.4125. DOI: 10.3390/molecules25184125.
Lafraxo, H., Bakour, M., Laaroussi, H., El Ghouizi, A., Ousaaid, D., Aboulghazi, A. and Lyoussi, B., 2021. The synergistic beneficial effect of thyme honey and olive oil against diabetes and its complications induced by alloxan in wistar rats. Evidence‐Based Complementary and Alternative Medicine, 2021(1), p.9949056. DOI: 10.1155/2021/9949056.
Liu, X., Han, Y., Peng, K., Liu, Y., Li, J. and Liu, H., 2011. Effect of traditional Chinese medicinal herbs on Candida spp. from patients with HIV/AIDS. Advances in Dental Research, 23(1), pp.56-60. DOI: 10.1177/0022034511399286.
Louveaux, J., Maurizio, A. and Vorwohl, G., 1978. Methods of melissopalynology. Bee World, 59(4), pp.139-157. DOI: 10.1080/0005772X.1978.11097714.
Mandal, M.D. and Mandal, S., 2011. Honey: its medicinal property and antibacterial activity. Asian Pacific Journal of Tropical Biomedicine, 1(2), pp.154-160. DOI: 10.1016/S2221-1691(11)60016-6.
Mathé, L. and Van Dijck, P., 2013. Recent insights into Candida albicans biofilm resistance mechanisms. Current Genetics, 59(4), pp.251-264. DOI: 10.1007/s00294-013-0400-3.
Molan, P.C., 1992. The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World, 73(1), pp.5-28. DOI: 10.1080/0005772X.1992.11099109.
Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G. and Worm, B., 2011. How many species are there on Earth and in the ocean?. PLoS Biology, 9(8), p.e1001127. DOI: 10.1371/journal.pbio.1001127.
Morad, H.O., Wild, A.M., Wiehr, S., Davies, G., Maurer, A., Pichler, B.J. and Thornton, C.R., 2018. Pre-clinical imaging of invasive candidiasis using immunoPET/MR. Frontiers in Microbiology, 9, p.1996. DOI: 10.3389/fmicb.2018.01996.
Mukaremera, L., Lee, K.K., Mora-Montes, H.M. and Gow, N.A., 2017. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Frontiers in Immunology, 8, p.629. DOI: 10.3389/fimmu.2017.00629.
Mukaremera, L., Lee, K.K., Mora-Montes, H.M. and Gow, N.A., 2017. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Frontiers in Immunology, 8, p.629.DOI: 10.3390/microorganisms12112309.
Nayik, G.A. and Nanda, V., 2016. A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT, 74, pp.504-513. DOI: 10.1016/j.lwt.2016.08.016.
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. and De Feo, V., 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), pp.1451-1474. DOI: 10.3390/ph6121451.
Nobile, C.J. and Johnson, A.D., 2015. Candida albicans biofilms and human disease. Annual Review of Microbiology, 69(1), pp.71-92. DOI: 10.1146/annurev-micro-091014-104330.
Oroian, M. and Ropciuc, S., 2017. Honey authentication based on physicochemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 138, pp.148-156.
DOI: 10.1016/j.compag.2017.04.020.
Özkök, A., Koru, Ö. and Sorkun, K., 2016. Microbiological analysis and antibacterial effects of Turkish thyme honey. Bee World, 93(4), pp.98-101.  DOI: 10.1080/0005772X.2016.1275489.
Pattamayutanon, P., Angeli, S., Thakeow, P., Abraham, J., Disayathanoowat, T. and Chantawannakul, P., 2015. Biomedical activity and related volatile compounds of Thai honeys from 3 different honeybee species. Journal of Food Science, 80(10), pp.M2228-M2240.
DOI: 10.1111/1750-3841.12993.
PFALLER, M. A. & DIEKEMA, D. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews, 20, 133-163. DOI: 10.1128/cmr.00029-06.
Pfaller, M.A. and Diekema, D., 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews, 20(1), pp.133-163.
DOI: 10.3390/jof3010014.
Sardi, J.C.O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A.M. and Mendes Giannini, M.J.S., 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, 62(1), pp.10-24. DOI: 10.1099/jmm.0.045054-0.
Shariati, A., Didehdar, M., Razavi, S., Heidary, M., Soroush, F. and Chegini, Z., 2022. Natural compounds: a hopeful promise as an antibiofilm agent against Candida species. Frontiers in Pharmacology, 13, p.917787. DOI: 10.3389/fphar.2022.917787.
Shukla, S.K. and Rao, T.S., 2017. An improved crystal violet assay for biofilm quantification in 96-well microtitre plate. Biorxiv, p.100214. DOI: 10.1101/100214.
Swetha, T.K., Vikraman, A., Nithya, C., Hari Prasath, N. and Pandian, S.K., 2020. Synergistic antimicrobial combination of carvacrol and thymol impairs single and mixed-species biofilms of Candida albicans and Staphylococcus epidermidis. Biofouling, 36(10), pp.1256-1271.
DOI: 10.1080/08927014.2020.1869949.
Tseung, K. S. Y. N. H. & Zhao, J. 2016. Update on the fungal biofilm drug resistance and its alternative treatment. Journal of Biosciences and Medicines, 4, 37-47. DOI: 10.4236/jbm.2016.45004.
Tsui, C., Kong, E.F. and Jabra-Rizk, M.A., 2016. Pathogenesis of Candida albicans biofilm. FEMS Pathogens and Disease, 74(4), p.ftw018.DOI: 10.1093/femspd/ftw018.