Abu-Rezq, T.S., Al-Hooti, S. and Jacob, D.A., 2010. Optimum culture conditions required for the locally isolated Dunaliella salina. Journal of Algal Biomass Utilization, 1(2), pp.12-19.
Attaran-Fariman, G., 2014. Identification of native microalgae of the Oman Sea and their evaluation as live food in aquaculture. Final report of Iranian Fisheries Institute, 166pp.
Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I. and Zamir, A., 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga
Dunaliella salina.
Plant Physiology, 129(3), pp.1320-1329.
DOI: https://doi.org/10.1104/pp.001909.
Bhola, V., Swalaha, F., Ranjith Kumar, R., Singh, M. and Bux, F., 2014. Overview of the potential of microalgae for CO₂ sequestration. International Journal of Environmental Science and Technology, 11, pp.2103-2118.
Bligh, E.G. and Dyer, W.J., 1959. A rapid method of total lipid extraction and purification.
Canadian Journal of Biochemistry and Physiology, 37(8), pp.911-917.
DOI: https://doi.org/10.1139/o59-099.
Borowitzka LJ, Kessly DS, Brown AD. 1977. The salt relation of Dunaliella. Further observation on glycerol production and its regulation. Archive for Microbiology, 13: 131–38. DOI: https://doi.org/10.1007/BF00428592.
Borowitzka, M.A. and Siva, C.J., 2007. The taxonomy of the genus
Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species.
Journal of Applied Phycology, 19(5), pp.567-590.
DOI: https://doi.org/10.1007/BF00428592.
Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S. and Cadoret, J.P., 2012. Enhancement of neutral lipid productivity in the microalga
Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure.
Biotechnology and Bioengineering, 109(11), pp.2737-2745.
DOI: https://doi.org/10.1002/bit.24560.
Can, S.S., Cirik, S., Koru, E., Turan, G., Tekoğul, H. and Subakan, T., 2016. Effects of salinity, light and nitrogen concentration on growth and lipid accumulation of the green algae Dunaliella salina. Fresenius Environmental Bulletin, 25(5), pp.1437-1447.
Chandra, R., Rohit, M.V., Swamy, Y.V. and Mohan, S.V., 2014. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation.
Bioresource Technology, 165, pp.279-287.
DOI: https://doi.org/10.1016/j.biortech.2014.02.102.
Cheirsilp, B. and Torpee, S., 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation.
Bioresource Technology, 110, pp.510-516.
DOI: https://doi.org/10.1016/j.biortech.2012.01.125.
Chen, H., Jiang, J.G. and Wu, G.H., 2009. Effects of salinity changes on the growth of
Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase.
Journal of Agricultural and Food Chemistry, 57(14), pp.6178-6182
DOI: https://doi.org/10.1021/jf900447r.
Chen, M., Tang, H., Ma, H., Holland, T.C., Ng, K.S. and Salley, S.O., 2011. Effect of nutrients on growth and lipid accumulation in the green algae
Dunaliella tertiolecta.
Bioresource Technology, 102(7), pp.1649-1655.
DOI: https://doi.org/10.1016/j.biortech.2010.09.062
Chu, W.L., 2012. Biotechnological applications of microalgae. International e-Journal of Science, Medicine and Education, 6(1), pp. S24-S37.
Deora, P.S., Verma, Y., Muhal, R.A., Goswami, C. and Singh, T., 2022. Biofuels: An alternative to conventional fuel and energy source.
Materials Today: Proceedings, 48, pp.1178-1184.
DOI: https://doi.org/10.1016/j.matpr.2021.08.227.
Deyab, M.A., El-Sadany, A., Ghazal, M.A. and El-Adl, M., 2021. Nitrogen deficiency maximizes the production and accumulation of β-carotene via induction of different macromolecule derivatives in
Dunaliella salina (Dunal) Teodoresco.
Egyptian Journal of Botany, 61(2), pp.453-466. doi:
10.21608/ejbo.2021.40359.1542.
Fried, A., Tietz, A., Ben-Amotz, A. and Eichenberger, W., 1982. Lipid composition of the halotolerant alga,
Dunaliella salina.
Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 713(2), pp.419-426.
DOI: https://doi.org/10.1016/0005-2760(82)90261-2.
Gordillo, F.J., Goutx, M., Figueroa, F.L. and Niell, F.X., 1998. Effects of light intensity, CO₂ and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology, 10(2), pp.135-144. DOI: https://doi.org/10.1023/A:1008067022973.
Gu, N., Lin, Q., Li, G., Tan, Y., Huang, L. and Lin, J., 2012. Effect of salinity on growth, biochemical composition, and lipid productivity of
Nannochloropsis oculata CS 179.
Engineering in Life Sciences, 12(6), pp.631-637.
DOI: https://doi.org/10.1002/elsc.201100204
Guillard, R.R. and Ryther, J.H., 1962. Studies of marine planktonic diatoms: I.
Cyclotella nana Hustedt, and
Detonula confervacea (Cleve) Gran.
Canadian Journal of Microbiology, 8(2), pp.229-239.
DOI: https://doi.org/10.1139/m62-029
Heredia-Arroyo, T., Wei, W., Ruan, R. and Hu, B., 2011. Mixotrophic cultivation of
Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials.
Biomass and Bioenergy, 35(6), pp.2245-2253.
DOI: https://doi.org/10.1016/j.biombioe.2011.02.036
Hopkins, T.C., Graham, E.J.S. and Schuler, A.J., 2019. Biomass and lipid productivity of
Dunaliella tertiolecta in a produced water-based medium over a range of salinities.
Journal of Applied Phycology, 31(5), pp.3349-3358.
DOI: https://doi.org/10.1007/s10811-019-01836-3 .
IPCC. (2022).
Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, et al. (eds.)]. Cambridge University Press.
DOI: https://doi.org/10.1017/9781009157926 .
Isleten-Hosoglu, M., Gultepe, I. and Elibol, M., 2012. Optimization of carbon and nitrogen sources for biomass and lipid production by
Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence-based method for quantification of its neutral lipid content.
Biochemical Engineering Journal, 61, pp.11-19.
DOI: https://doi.org/10.1016/j.bej.2011.12.001
Jiménez, C. and Niell, F.X., 1991. Growth of
Dunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration.
Journal of Applied Phycology, 3(4), pp.319-327.
DOI: https://doi.org/10.1007/BF02392885.
Li, T., Wan, L., Li, A. and Zhang, C., 2013. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations.
Chinese Journal of Oceanology and Limnology, 31(6), pp.1306-1314.
DOI: https://doi.org/10.1007/s00343-013-2316-7.
Liu, J., 2014. Optimization of biomass and lipid production by adjusting the interspecific competition mode of
Dunaliella salina and
Nannochloropsis gaditana in mixed culture.
Journal of Applied Phycology, 26(1), pp.163-171.
DOI: https://doi.org/10.1007/s10811-013-0099-z.
Lombardi, A. and Wangersky, P.J., 1995. Particulate lipid class composition of three marine phytoplankters
Chaetoceros gracilis,
Isochrysis galbana (Tahiti), and
Dunaliella tertiolecta grown in batch culture.
Hydrobiologia, 306(1), pp.1-6.
DOI: https://doi.org/10.1007/BF00007853.
Mairet, F., Bernard, O., Masci, P., Lacour, T. and Sciandra, A., 2011. Modelling neutral lipid production by the microalga
Isochrysis aff. galbana under nitrogen limitation.
Bioresource Technology, 102(1), pp.142-149.
DOI: https://doi.org/10.1016/j.biortech.2010.06.138.
Mata, T.M., Almeidab, R. and Caetanoa, N.S., 2013. Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem Eng, 32, p.973.
Moheimani, N.R., Borowitzka, M.A., Isdepsky, A. and Fon Sing, S., 2013. Standard methods for measuring growth of algae and their composition. In: Borowitzka, M.A. and Moheimani, N.R. (eds.)
Algae for Biofuels and Energy. Dordrecht: Springer, pp.265-284.
DOI: https://doi.org/10.1007/978-94-007-5479-9_16.
Pacheco, M.M., Hoeltz, M., de Souza, D., Benitez, L.B., Schneider, R.C. and Müller, M.V., 2017. Current approaches in producing oil and biodiesel from microalgal biomass. In:
Waste Biomass Management–A Holistic Approach. Springer, pp.289-310.
DOI: https://doi.org/10.1007/978-3-319-49595-8_13.
Peeler, T.C., Stephenson, M.B., Einspahr, K.J. and Thompson, G.A., 1989. Lipid characterization of an enriched plasma membrane fraction of
Dunaliella salina grown in media of varying salinity.
Plant Physiology, 89(3), pp.970-976.
DOI: https://doi.org/10.1104/pp.89.3.970.
Perez‐Garcia, O., Bashan, Y. and Esther Puente, M., 2011. Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga
Chlorella Vulgaris 1.
Journal of Phycology, 47(1), pp.190-199.
DOI: https://doi.org/10.1111/j.1529-8817.2010.00934.x.
Rios, L., Da Silva, C., Tasic, M., Wolf-Maciel, M. and Maciel Filho, R., 2016. Cultivation of three microalgae strains under mixotrophic conditions for biodiesel production.
Chemical Engineering Transactions, 50, pp.409-414.
http://dx.doi.org/10.3303/CET1650069.
Shokravi, Z., Shokravi, H., Chyuan, O.H., Lau, W.J., Koloor, S.S.R., Petrů, M. and Ismail, A.F., 2020. Improving ‘lipid productivity’in microalgae by bilateral enhancement of biomass and lipid contents: A review.
Sustainability, 12(21), p.9083.
DOI: https://doi.org/10.3390/su12219083.
Takagi, M. and Yoshida, T., 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae
Dunaliella cells.
Journal of Bioscience and Bioengineering, 101(3), pp.223-226.
DOI: https://doi.org/10.1263/jbb.101.223.
Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A. and Ghasemi, Y., 2013. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production.
Algal Research, 2(3), pp.258-267.
DOI: https://doi.org/10.1016/j.algal.2013.04.003.
Truc, M.V., Phuc, N.H., Trung, V.P., Hieu, H.V. and Son, T.L., 2017. Accumulation of lipid in Dunaliella salina under nutrient starvation condition. American Journal of Food and Nutrition, 5(2), pp.58-61. DOI:10.12691/ajfn-5-2-2.
Uriarte, I., Farias, A., Hawkins, A.J.S. and Bayne, B.L., 1993. Cell characteristics and biochemical composition of
Dunaliella primolecta butcher conditioned at different concentrations of dissolved nitrogen.
Journal of Applied Phycology, 5(4), pp.447-453.
DOI: https://doi.org/10.1007/BF02182737.
Vanitha, A., Narayan, M., Murthy, K. and Ravishankar, G.A., 2007. Comparative study of lipid composition of two halotolerant algae,
Dunaliella salina and
Dunaliella salina.
International Journal of Food Sciences and Nutrition, 58(5), pp.373-382.
DOI: https://doi.org/10.1080/09637480701252252.
Vo, T.Q. and Tran, D.T., 2014. Effects of salinity and light on the growth of Dunaliella isolates. Journal of Applied and Environmental Microbiology, 2(6), pp.208-211.
Vo, T.Q., Tran, S.M., Nguyen, P.T. and Mai, T.T., 2017. Growth, carotenoid production, antioxidant capacity, and lipid accumulation of Haematococcus sp. under different light intensities. American Journal of Plant Biology, 2(4), pp.142-147.
Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A. and Betenbaugh, M.J., 2011. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in
Chlorella sorokiniana.
Applied Microbiology and Biotechnology, 91(3), pp.835-844.
DOI: https://doi.org/10.1007/s00253-011-3399-8.
Xu, F., Hu, H.H., Cong, W., Cai, Z.L. and Ouyang, F., 2004. Growth characteristics and eicosapentaenoic acid production by
Nannochloropsis sp. in mixotrophic conditions.
Biotechnology Letters, 26(1), pp.51-53.
DOI: https://doi.org/10.1023/B:BILE.0000009460.81267.cc.