Efficiency of Microalga Dunaliella tertiolecta in Cultivation and Removal of Pollutants from Dairy Industry Wastewater

Document Type : Original Article

Authors

1 Department of Fisheries, Faculty of Natural Resources, University of Zabol

2 Department of Aquatic Science, Hamoun International Wetland Institute, Research Institute of Zabol, Zabol, Iran.

3 Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran

10.48308/pae.2025.240751.1118

Abstract

Dunaliella tertiolecta is increasingly recognized as a valuable bioindustry microalga due to its ability to produce high-value pigments and biologically active compounds. However, the high cost of conventional culture media remains a major challenge for its large-scale cultivation. To address this issue, using nutrient-rich industrial wastewaters, such as dairy effluent, offers a promising, sustainable, and economical alternative. This study investigated the growth performance and pigment production of D. tertiolecta cultivated for 21 days in five concentrations of dairy wastewater (0%, 25%, 50%, 75%, and 100%) under controlled laboratory conditions (light intensity of 2500 lux; salinity of 1.5 M; temperature of 25 ± 2°C; pH of 7.5 ± 0.15). Algal cell density, chlorophyll a, chlorophyll b, and carotenoid content were measured every three days, while levels of ammonia, nitrate, and phosphate were assessed every five days. The results showed that the 25% wastewater treatment (T2) produced the highest cell density on day 12 (54.20 × 106 ± 1 cells/mL). This treatment also resulted in the highest pigment concentrations, with chlorophyll a at 2.76 ± 0.04 mg/mL, chlorophyll b at 7.24 ± 0.06 mg/mL, and carotenoids at 2.24 ± 0.06 mg/mL concentrations. In terms of nutrient removal, T2 achieved the greatest reduction in phosphate (0.052 ± 0.02 mg/mL) and nitrate (0.059 ± 0.94 mg/mL), while the highest ammonia removal (0.062 ± 2.23 mg/mL) occurred in the 50% treatment (T3). Overall, the findings indicate that dairy wastewater, when properly diluted, can serve as an effective and low-cost culture medium for D. tertiolecta, supporting both biomass production and wastewater bioremediation.

Keywords


Al-Tayawi, A. N., Sisay, E. J., Beszédes, S., & Kertész, S. 2023. Wastewater treatment in the dairy industry from classical treatment to promising technologies: An overview. Processes, 11(7), 2133. DOI: https://doi.org/10.3390/pr11072133.
Ahmad, F., Khan, A.U., and Yasar, A., 2014. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pakistan Journal of Botany, 45, pp. 461-65.
Babuji, P., Thirumalaisamy, S., Duraisamy, K., & Periyasamy, G. 2023. Human health risks due to exposure to water pollution: A review. Water, 15(14), 2532. DOI: https://doi.org/10.3390/w15142532.
Barbosa, M., Inácio, L. G., Afonso, C., & Maranhão, P. 2023. The microalga Dunaliella and its applications: a review. Applied Phycology, 4(1), 99–120. DOI: https://doi.org/10.1080/26388081.2023.2222318.
Brar, A., Kumar, M. and Pareek, N., 2019. Comparative Appraisal of Biomass Production, Remediation, and Bioenergy Generation Potential of Microalgae in Dairy Wastewater. Frontiers in Microbiology, 10, pp. 678. DOI: https://doi.org/10.3389/fmicb.2019.00678.
Celente, G. S., Schneider, R. C. S., Julich, J., Rizzetti, T. M., Lobo, E. A., & Sui, Y. 2024. Life cycle assessment of microalgal cultivation medium: biomass, glycerol, and beta-carotene production by Dunaliella salina and Dunaliella tertiolecta. The International Journal of Life Cycle Assessment, 29, 2269–2282. DOI: https://doi.org/10.1007/s11367-023-02209-2.
Chen, L.-H., Xu, M., Cheng, Z., & Yang, L.-T. 2024. Effects of nitrogen deficiency on the photosynthesis, chlorophyll a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa. International Journal of Molecular Sciences, 25(19), 10409. DOI: https://doi.org/10.3390/ijms251910409.
Costa, J.A.V., Gonzalescruz, C. and Rosa, P.C., 2021. Insights into the technology utilized to cultivate microalgae in dairy effluents. Biocatalysis and Agricultural Biotechnology, 35, pp. 102106. DOI: https://doi.org/10.1016/j.bcab.2021.102106.
De Francisci, D., Su, Y., Iital, A. and Angelidaki, I., 2018. Evaluation of microalgae production coupled with wastewater treatment. Environmental technology, 39(5), pp.581-592. DOI: https://doi.org/10.1080/09593330.2017.1308441.
Demmig-Adams, B., López-Pozo, M., Stewart, J. J., & Adams III, W. W. 2020. Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules, 25(16), 3607. DOI: https://doi.org/10.3390/molecules2516360.
Dickinson, K.E., Bjornsson, W.J., Garrison, L.L., Whitney, C.G., Park, K.C., Banskota, A.H., and McGinn, P.J., 2014. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats. Journal of Applied Microbiology. 118: pp. 75-83. DOI: https://doi.org/10.1111/jam.12681.
Frank, G. and Wegmann, K., 1979. Physiology and biochemistry of glycerol biosynthesis in Dunaliella. Biologisches zentralblatt, 93, pp. 707-723.
Hen, L., Pei, H., Hu, W., Jiang, L., Ma, G., Zhang, S. and Han, F., 2015. Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresource technology 175, pp. 262-268. DOI:10.1016/j.biortech.2014.10.100.
Jayaswal, K., Sahu, V., & Gurjar, B. R. 2017. Water pollution, human health and remediation. In B. R. Gurjar (Ed.), Air pollution and health impacts in South Asia (pp. 19–34). Springer. DOI: https://doi.org/10.1007/978-981-10-7551-3_2.
Jimeto, K. I., Ajibade, F. O., Ajibade, T. F., John, C. K., Lasisi, K. H., Ojo, A. O., & Adewumi, J. R. 2025. Strategic management of dairy wastewater. In F. O. Ajibade (Ed.), Strategic Management of Wastewater from Intensive Rural Industries (pp. 73–102). Springer. DOI: https://doi.org/10.1007/978-3-031-90314-43.
Khalaji, M., Hosseini, S. A., Ghorbani, R., Agh, N., Rezaei, H., Kornaros, M. and Koutra, E., 2021. Treatment of dairy wastewater by microalgae Chlorella vulgaris for biofuels production. Biomass Conversion and Biorefinery, pp. 1-7. DOI: https://doi.org/10.1007/s13399-021-01287-2.
Khemka, A. and Saraf, M., 2017. Strategic enhancement of Desertifilum tharense MSAK01 on dairy wastewater: An integrated approach for remediation and biomass production. Applied Water Science, 7, pp. 2779–2785. DOI: https://doi.org/10.1007/s13201-017-0525-5.
Lin, L., Yang, H., & Xu, X. 2022. Effects of water pollution on human health and disease heterogeneity: A review. Frontiers in Environmental Science, 10, 880246. DOI: https://doi.org/10.3389/fenvs.2022.880246.
Lu, B., Du, X., and Huang, S., 2017. The economic and environmental implications of wastewater management policy in China: from the LCA perspective. Journal of Cleaner Production, 142, pp. 3544–3557. DOI: 10.1016/j.jclepro.2016.10.113.
Martínez-Ruiz, F.E., Andrade-Bustamante, G., Holguín-Peña, R.J., 2025. Microalgae as Functional Food Ingredients: Nutritional Benefits, Challenges, and Regulatory Considerations for Safe Consumption. Biomass, 5(2), 25. Available on MDPI
Martınez, M., Sánchez, S., Jimenez, J., El Yousfi, F. and Mu-noz, L., 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology,73(3), pp. 263-72. DOI: https://doi.org/10.1016/S0960-8524(99)00121-2.
Mishra, A., Mandoli, A., & Jha, B. 2008. Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from the salt pan. Journal of Industrial Microbiology & Biotechnology, 35(10), 1093–1101. DOI: https://doi.org/10.1007/s10295-008-0387-9.
Mokhberi, R., Rezaei, A., and Kordenaeej, A., 2015, Increased Production of Beta-Carotene and Glycerol in Dunaliella Salina Cell Culture by Ultrasound. Journal of Cell & Tissue, 6 (3), pp. 397-408.
Nave, R. 2023. Pigments for photosynthesis. HyperPhysics, Georgia State University. Retrieved from http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/pigpho.html
Neczaj, E., Okoniewska, E. and Kacprzak, M., 2005.Treatment of landfill leachate by a sequencing batch reactor. Desalination. 185(1), pp. 357-62. DOI: https://doi.org/10.1016/j.desal.2005.04.044.
Peralta, H. M. 2023. An overview of environmental factor’s effect on the growth of microalgae. Academia.edu. Retrieved from the Academia.edu publication page.
Radwan, M. 2020. A short review of effective dairy wastewater treatment techniques. International Journal of Engineering Research & Technology (IJERT), 9(7), Article IJERTV9IS070456. DOI: https://www.ijert.org/a-short-review-on-effective-dairy-wastewater-treatment-techniques.
Richmond, A., 2003. Handbook of Microalgal Mass Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd., pp. 212–230. DOI:10.1002/9780470995280.
Robertson, D. E. 2021. Algal pigments. The Robertson Laboratory, Clark University. Retrieved from https://wordpress.clarku.edu/debrobertson/laboratory-protocols/algal-pigments.
Rodrigues-Sousa, A.E., Nunes., V.O.I. Muniz-Junior, A.B., Carvalho, J.C.M., Mejia-da-Silva, L.C., Salla, A. C. V., Margarites, A. C., Seibel, F. I., Holz, L. C., Brião, V. B., Bertolin, T. E. and Costa, J. A. V., 2016. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource technology, 209, pp. 133-141. DOI: https://doi.org/10.1016/j.biortech.2016.02.069.
Salgueiro, J. L., Perez, L., Maceiras, R., Sanchez, A. and Cancela, A., 2016. Bioremediation of wastewater using Chlorella vulgaris microalgae: Phosphorus and organic matter. International Journal of Environmental Research, 10(3), pp. 465-470. DOI: 10.22059/IJER.2016.58766.
Seo, Y. H., Do, J. M., Suh, H. S., Park, S. B., and Yoon, H. S., 2024. Treatment of Swine Wastewater Using the Domestic Microalga Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction. Applied Sciences, 14(24), pp. 11650.‏ DOI: https://doi.org/10.3390/app142411650.
Sudhanthiran, M. C., & Perumalsamy, M. 2022. Bioremediation of dairy industry wastewater and assessment of nutrient removal potential of Chlorella vulgaris. Biomass Conversion and Biorefinery, 14, 10335–10346. DOI: https://doi.org/10.1007/s13399-022-03068-x.
Tayawi, A., Sisay, E., Beszédes, S., & Kertész, S. 2025. Wastewater treatment in the dairy industry from classical treatment to promising technologies: An overview. MDPI. Retrieved February 18, 2025, from Wikipedia summary.
Trenkenshu, R.P., 2005. Simplest models of microalgae growth, 2 queasy continuous culture. Ecologia moray, 67, pp. 98-110.
Yang, C., Liu, H., Li, M., Yu, C., and Yu, G., 2011. Treating urine by Spirulina platensis. Acta Astronautica. 63(7-10), pp. 1049–1054. DOI: https://doi.org/10.1016/j.actaastro.2008.03.008.
Zhang, P., Li, Z., Lu, L., Xiao, Y., Liu, J., Guo, J., and Fang, F., 2017. Effects of Stepwise Nitrogen Depletion on Carotenoid Content, Fluorescence Parameters, and the Cellular Stoichiometry of Chlorella vulgaris. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, pp. 30–38. DOI: https://doi.org/10.1016/j.saa.2017.03.022.