Al-Tayawi, A. N., Sisay, E. J., Beszédes, S., & Kertész, S. 2023. Wastewater treatment in the dairy industry from classical treatment to promising technologies: An overview. Processes, 11(7), 2133. DOI:
https://doi.org/10.3390/pr11072133.
Ahmad, F., Khan, A.U., and Yasar, A., 2014. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pakistan Journal of Botany, 45, pp. 461-65.
Babuji, P., Thirumalaisamy, S., Duraisamy, K., & Periyasamy, G. 2023. Human health risks due to exposure to water pollution: A review. Water, 15(14), 2532. DOI:
https://doi.org/10.3390/w15142532.
Brar, A., Kumar, M. and Pareek, N., 2019. Comparative Appraisal of Biomass Production, Remediation, and Bioenergy Generation Potential of Microalgae in Dairy Wastewater.
Frontiers in Microbiology, 10, pp. 678. DOI:
https://doi.org/10.3389/fmicb.2019.00678.
Celente, G. S., Schneider, R. C. S., Julich, J., Rizzetti, T. M., Lobo, E. A., & Sui, Y. 2024. Life cycle assessment of microalgal cultivation medium: biomass, glycerol, and beta-carotene production by
Dunaliella salina and
Dunaliella tertiolecta. The International
Journal of Life Cycle Assessment, 29, 2269–2282. DOI:
https://doi.org/10.1007/s11367-023-02209-2.
Chen, L.-H., Xu, M., Cheng, Z., & Yang, L.-T. 2024. Effects of nitrogen deficiency on the photosynthesis, chlorophyll a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa. International
Journal of Molecular Sciences, 25(19), 10409. DOI:
https://doi.org/10.3390/ijms251910409.
Costa, J.A.V., Gonzalescruz, C. and Rosa, P.C., 2021. Insights into the technology utilized to cultivate microalgae in dairy effluents.
Biocatalysis and Agricultural Biotechnology, 35, pp. 102106. DOI:
https://doi.org/10.1016/j.bcab.2021.102106.
De Francisci, D., Su, Y., Iital, A. and Angelidaki, I., 2018. Evaluation of microalgae production coupled with wastewater treatment.
Environmental technology,
39(5), pp.581-592. DOI:
https://doi.org/10.1080/09593330.2017.1308441.
Demmig-Adams, B., López-Pozo, M., Stewart, J. J., & Adams III, W. W. 2020. Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules, 25(16), 3607. DOI:
https://doi.org/10.3390/molecules2516360.
Dickinson, K.E., Bjornsson, W.J., Garrison, L.L., Whitney, C.G., Park, K.C., Banskota, A.H., and McGinn, P.J., 2014. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga
Scenedesmus sp. AMDD grown in continuous chemostats.
Journal of Applied Microbiology. 118: pp. 75-83. DOI:
https://doi.org/10.1111/jam.12681.
Frank, G. and Wegmann, K., 1979. Physiology and biochemistry of glycerol biosynthesis in Dunaliella. Biologisches zentralblatt, 93, pp. 707-723.
Hen, L., Pei, H., Hu, W., Jiang, L., Ma, G., Zhang, S. and Han, F., 2015. Integrated campus sewage treatment and biomass production by
Scenedesmus quadricauda SDEC-13.
Bioresource technology 175, pp. 262-268. DOI:
10.1016/j.biortech.2014.10.100.
Jayaswal, K., Sahu, V., & Gurjar, B. R. 2017. Water pollution, human health and remediation. In B. R. Gurjar (Ed.), Air pollution and health impacts in South Asia (pp. 19–34). Springer. DOI:
https://doi.org/10.1007/978-981-10-7551-3_2.
Jimeto, K. I., Ajibade, F. O., Ajibade, T. F., John, C. K., Lasisi, K. H., Ojo, A. O., & Adewumi, J. R. 2025. Strategic management of dairy wastewater. In F. O. Ajibade (Ed.), Strategic Management of Wastewater from Intensive Rural Industries (pp. 73–102). Springer. DOI:
https://doi.org/10.1007/978-3-031-90314-43.
Khalaji, M., Hosseini, S. A., Ghorbani, R., Agh, N., Rezaei, H., Kornaros, M. and Koutra, E., 2021. Treatment of dairy wastewater by microalgae Chlorella vulgaris for biofuels production. Biomass Conversion and Biorefinery, pp. 1-7. DOI: https://doi.org/10.1007/s13399-021-01287-2.
Khemka, A. and Saraf, M., 2017. Strategic enhancement of Desertifilum tharense MSAK01 on dairy wastewater: An integrated approach for remediation and biomass production. Applied Water Science, 7, pp. 2779–2785. DOI: https://doi.org/10.1007/s13201-017-0525-5.
Lin, L., Yang, H., & Xu, X. 2022. Effects of water pollution on human health and disease heterogeneity: A review. Frontiers in Environmental Science, 10, 880246. DOI:
https://doi.org/10.3389/fenvs.2022.880246.
Martínez-Ruiz, F.E., Andrade-Bustamante, G., Holguín-Peña, R.J., 2025. Microalgae as Functional Food Ingredients: Nutritional Benefits, Challenges, and Regulatory Considerations for Safe Consumption. Biomass, 5(2), 25. Available on MDPI
Martınez, M., Sánchez, S., Jimenez, J., El Yousfi, F. and Mu-noz, L., 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga
Scenedesmus obliquus.
Bioresource Technology,73(3), pp. 263-72. DOI:
https://doi.org/10.1016/S0960-8524(99)00121-2.
Mishra, A., Mandoli, A., & Jha, B. 2008. Physiological characterization and stress-induced metabolic responses of
Dunaliella salina isolated from the salt pan.
Journal of Industrial Microbiology & Biotechnology, 35(10), 1093–1101. DOI:
https://doi.org/10.1007/s10295-008-0387-9.
Mokhberi, R., Rezaei, A., and Kordenaeej, A., 2015, Increased Production of Beta-Carotene and Glycerol in Dunaliella Salina Cell Culture by Ultrasound. Journal of Cell & Tissue, 6 (3), pp. 397-408.
Peralta, H. M. 2023. An overview of environmental factor’s effect on the growth of microalgae.
Academia.edu. Retrieved from the
Academia.edu publication page.
Richmond, A., 2003. Handbook of Microalgal Mass Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd., pp. 212–230. DOI:10.1002/9780470995280.
Rodrigues-Sousa, A.E., Nunes., V.O.I. Muniz-Junior, A.B., Carvalho, J.C.M., Mejia-da-Silva, L.C., Salla, A. C. V., Margarites, A. C., Seibel, F. I., Holz, L. C., Brião, V. B., Bertolin, T. E. and Costa, J. A. V., 2016. Increase in the carbohydrate content of the microalgae
Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.
Bioresource technology, 209, pp. 133-141. DOI:
https://doi.org/10.1016/j.biortech.2016.02.069.
Salgueiro, J. L., Perez, L., Maceiras, R., Sanchez, A. and Cancela, A., 2016. Bioremediation of wastewater using
Chlorella vulgaris microalgae: Phosphorus and organic matter.
International Journal of Environmental Research, 10(3), pp. 465-470. DOI:
10.22059/IJER.2016.58766.
Seo, Y. H., Do, J. M., Suh, H. S., Park, S. B., and Yoon, H. S., 2024. Treatment of Swine Wastewater Using the Domestic Microalga
Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction.
Applied Sciences, 14(24), pp. 11650. DOI:
https://doi.org/10.3390/app142411650.
Sudhanthiran, M. C., & Perumalsamy, M. 2022. Bioremediation of dairy industry wastewater and assessment of nutrient removal potential of
Chlorella vulgaris. Biomass Conversion and Biorefinery, 14, 10335–10346. DOI:
https://doi.org/10.1007/s13399-022-03068-x.
Tayawi, A., Sisay, E., Beszédes, S., & Kertész, S. 2025. Wastewater treatment in the dairy industry from classical treatment to promising technologies: An overview. MDPI. Retrieved February 18, 2025, from Wikipedia summary.
Trenkenshu, R.P., 2005. Simplest models of microalgae growth, 2 queasy continuous culture. Ecologia moray, 67, pp. 98-110.
Yang, C., Liu, H., Li, M., Yu, C., and Yu, G., 2011. Treating urine by
Spirulina platensis.
Acta Astronautica. 63(7-10), pp. 1049–1054. DOI:
https://doi.org/10.1016/j.actaastro.2008.03.008.
Zhang, P., Li, Z., Lu, L., Xiao, Y., Liu, J., Guo, J., and Fang, F., 2017. Effects of Stepwise Nitrogen Depletion on Carotenoid Content, Fluorescence Parameters, and the Cellular Stoichiometry of
Chlorella vulgaris.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, pp. 30–38. DOI:
https://doi.org/10.1016/j.saa.2017.03.022.