Production of Phycocyanin Natural Blue Dye of Algal Origin and Evaluation of Different Extraction and Purification Methods

Document Type : Original Article

Authors

1 Faculty of Natural Resources and Desert Study, Yazd University, Yazd, Iran

2 Department of Biology, Yazd University, Yazd, Iran

3 Department of electrical engineering, Cambridge University, Cambridge, UK

10.48308/pae.2025.240991.1119

Abstract

Phycocyanin's potential as a natural dye is indeed promising, especially considering the harmful side effects associated with artificial food colors. Its high antioxidant properties make it a valuable ingredient in various industries, including food, pharmaceutical, and beauty. Phycocyanin, a blue pigment extracted from Spirulina platensis, is a phycobiliprotein known for its diverse pharmacological benefits. Its natural origin and functional properties make it a promising alternative to synthetic food colorants, and continued research into its applications may provide safer and healthier options for consumers. The comparison of the freeze-thaw and phosphate buffer extraction methods in this study sheds light on the efficiency and effectiveness of different extraction techniques for obtaining phycocyanin. The exploration of salt concentrations as a means to enhance purity index and product yield provides valuable insights into optimizing extraction processes. Additionally, the use of chitosan, activated charcoal, and sodium citrate for purification further demonstrates the importance of refining and purifying phycocyanin for various applications. Overall, the study's findings contribute to the understanding of extraction and purification methods for phycocyanin, offering potential strategies for improving the quality and yield of this natural pigment. The outcomes of this research project indicate that the purity index of phycocyanin obtained through the freeze-thaw method surpasses that achieved via the phosphate buffer method. Moreover, the results from the sodium chloride salt method, when compared to the control, demonstrate that the purity of phycocyanin can be enhanced with increasing concentrations of salt, reaching up to1 M. Furthermore, activated charcoal has been identified as the most effective substance for phycocyanin purification, significantly enhancing the purity of the blue color among three purification methods evaluated, which include chitosan, activated charcoal, and sodium citrate. Under optimal conditions, the extracted phycocyanin exhibits the highest concentration of 5.12 mg/mL, a purity index of R: 1.17, and a production efficiency of 11.8%. Future studies should aim to scale up the optimized extraction and purification processes, evaluating the economic feasibility for industrial production, and evaluate the stability and functionality of the purified phycocyanin within specific food and cosmetic applications.

Keywords


Ameri, M., Gord-Noshahri, N., Ghazi-Birgandi, R., and Jalali Ghassam, B., 2018. Evaluation of different extraction methods for phycocyanin extraction from Spirulina platensis. Plant, Algae, and Environment, 2(2), pp.211-217. https://plagen.sbu.ac.ir/article_99092_8c00b9b1983eb9f07bee5c9c25c92ccd.pdf.
Bennett, A. and Bogorad, L., 1973. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), pp.419-435. DOI: 10.1083/jcb.58.2.419.
Chini Zittelli, G., Mugnai, G., Milia, M., Cicchi, B., Benavides, A. S., Angioni, A., & Torzillo, G. 2022. Effects of blue, orange, and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Research, 61, 102583. DOI: org/10.1016/j.algal.2021.102583.
Posadas, E., Alcántara, C., García-Encina, P.A., Gouveia, L., Guieysse, B., Norvill, Z., Acién, F.G., Markou, G., Congestri, R., Koreiviene, J. and Muñoz, R., 2017. Microalgae cultivation in wastewater. In Microalgae-based biofuels and bioproducts (pp. 67-91). Woodhead Publishing. DOI: 10.1016/B978-0-08-101023-5.00006-6.
De Matos Fernandes SC. 2010. Novel materials based on chitosan, its derivatives, and cellulose fibres. PhD thesis. Universidade de Aveiro (Portugal).
Doke Jr, J.M., 2005. An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5). Doi: 10.2202/1556-3758.1037.
Fekrat, F., Nami, B., Ghanavati, H., Ghaffari, A. and Shahbazi, M., 2019. Optimization of chitosan/activated charcoal-based purification of Arthrospira platensis phycocyanin using response surface methodology. Journal of Applied Phycology, 31(2), pp.1095-1105. DOI: 10.1007/s10811-018-1626-8.
Ferreira-Santos, P., Nunes, R., De Biasio, F., Spigno, G., Gorgoglione, D., Teixeira, J.A. and Rocha, C.M., 2020. Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis. Lwt, 128, p.109491. Doi: 10.1016/j.lwt. 2020.109491.
Ghosh, S., Sarkar, T., Pati, S., Kari, Z. A., Edinur, H. A., and Chakraborty, R. 2022. Novel bioactive compounds from marine sources as a tool for functional food development. Frontiers in Marine Science, 9, 832957.‏ DOI: 10.1016/j.lwt.2021.112527.
Hsieh-Lo, M., Castillo, G.; Ochoa-Becerra, M.A.; Mojica, L. 2019. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 42, 101600. DOI: 10.1016/j.algal.2019.101600.
Jaeschke DP, Teixeira IR, Marczak LDF, Mercali GD. 2021. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International, 143:110314.  Doi: 10.1016/j.foodres. 2021.110314.
Kuhnholz J, Glockow T, Siebecke V, Le AT, Tran L-D, Noke A. 2024. Comparison of different methods for the extraction of phycocyanin from the cyanobacterium Arthrospira maxima (Spirulina). Journal of Applied Phycology, 1-11. DOI: 10.1007/s10811-024-03224-y.
Kumar, D., Dhar, D.W., Pabbi, S., Kumar, N. and Walia, S., 2014. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology, 19(2), pp.184-188. Doi: 10.1007/s40502-014-0094-7.
Matufi F., and Choopani A. 2020. Spirulina, food of the past, present, and future. Health Biotechnology and Biopharma, 3(4): 1-20. DOI: 10.22034/HBB.2020.26. 
Mirbagheri Firoozabad, M.S., and Nateghi, A.H., 2025. Microbial Production of Phycocyanin. In Microbial Production of Food Bioactive Compounds (pp. 1-19). Cham: Springer Nature Switzerland. DOI: 10.1007/978-3-030-81403-8_61-1.
Mogany, T., Kumari, S., Swalaha, F.M., and Bux, F., 2019. Extraction and characterisation of analytical grade C-phycocyanin from Euhalothece sp. Journal of Applied Phycology, 31(3), pp.1661-1674. Doi: 10.1007/s10811-018-1661-5.
Oliveira EGd, Rosa GSd, Moraes MAd, Pinto LAdA. 2008. Phycocyanin content of Spirulina platensis dried in a spouted bed and thin layer. Journal of Food Process Engineering; 31(1):34-50. DOI: 10.1111/j.1745-4530.2007.00143.x.
Omokaro, G.O., Nafula, Z.S., Iloabuchi, N.E., Chikukula, A.A., Osayogie, O.G., and Nnoli, E.C., 2025. Microalgae as Biofactories for Sustainable Applications: Advancing Carbon Sequestration, Bioenergy, and Environmental Remediation. Sustainable Chemistry for Climate Action, p.100098. DOI: 10.1016/j.scca.2025.100098.
Payne, E.J.R., Griffiths, M., Harrison, S.T.L., and Fagan‑Endres, M.A. 2025. A summary and critique of the various spectrophotometric methods used to quantify C-phycocyanin concentration. Journal of Applied Phycology, 37, 727–734. DOI: 10.1007/s10811-025-03474-4.
Pispas, K.; Manthos, G.; Sventzouri, E.; Geroulia, M.; Mastropetros, S.G.; Ali, S.S.; Kornaros, M. 2024. Optimizing phycocyanin extraction from cyanobacterial biomass: a comparative study of freeze–thaw cycling with various solvents. Marine Drugs, 22, 246. DOI: 10.3390/md22060246.
Safari R., Raftani Amiri Z., and Esmaeilzadeh Kenari R. 2020. Antioxidant and antibacterial activities of C-phycocyanin from the common name Spirulina platensis. Iranian Journal of Fisheries Sciences, 19(4) 1911-1927. Doi: 10.22092/ijfs.2019.118129.
Silveira ST, Burkert JFdM, Costa JAV, Burkert CAV, Kalil SJ. 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98: 1629-1634. DOI: 10.1016/j.biortech.2006.05.050.
Soto-Sierra, L., Stoykova, P. and Nikolov, Z.L., 2018. Extraction and fractionation of microalgae-based protein products. Algal research, 36, pp.175-192. DOI 10.1016/j.algal.2018.10.023.
Subramaiam, H., Chu, W.L., Radhakrishnan, A.K., Chakravarthi, S., Selvaduray, K.R. and Kok, Y.Y., 2021. Evaluating anticancer and immunomodulatory effects of spirulina (Arthrospira) platensis and gamma-tocotrienol supplementation in a syngeneic mouse model of breast cancer. Nutrients, 13(7), p.2320. DOI: 10.3390/nu13072320.
Vilahur, G., Sutelman, P., Ben-Aicha, S., Mendieta, G., Radiké, M., Schoch, L., Casaní, L., Borrell-Pagés, M., Padro, T. and Badimon, L., 2022. Supplementation with spirulina reduces infarct size and ameliorates cardiac function in a pig model of STEMI. Frontiers in Pharmacology, 13, p.891801.
Vinothkanna, A. and Sekar, S., 2020. Diagnostic applications of phycobiliproteins. In Pigments from microalgae handbook (pp. 585-610). Cham: Springer International Publishing.
Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S. and Richmond, A., 1982. Production of Spirulina biomass: effects of environmental factors and population density. Biomass, 2(3), pp.175-185. DOI: 10.1016/0144-4565(82)90028-2.
Zhang, X., Zhang, F., Luo, G., Yang, S. and Wang, D., 2015. Extraction and separation of phycocyanin from Spirulina using aqueous two-phase systems of ionic liquid and salt. Journal of Food and Nutrition Research, 3(1), pp.15-19. DOI: 10.12691/jfnr-3-1-3.