Behzadian, Z., Khavari-Nejad, R., Soltani, N. and Dezfulian, M., 2020. Exopolysaccharide production from Nostoc sp. under different nutritional conditions. Plant, Algae, and Environment, 4(1), pp.508-522.
Borsari, R.R.J., Morioka, L.R.I., Ribeiro, M.L.L., Buzato, J.B. and Pinotti, M.H.P., 2007. Mixotrophic growth of Nostoc sp. on glucose, sucrose, and sugarcane molasses for phycobiliprotein production. Acta Scientiarum. Biological Sciences, 29(1), pp.9-13.
Caille, C., Duhamel, S., Latifi, A. and Rabouille, S., 2024. Adaptive responses of cyanobacteria to phosphate limitation: a focus on marine diazotrophs.
Environmental Microbiology, 26(12), p.e70023.
DOI: https://doi.org/10.1111/1462-2920.70023.
Chen, H., Qi, H. and Xiong, P., 2022. Phycobiliproteins—a family of algae-derived biliproteins: production, characterization and pharmaceutical potentials.
Marine Drugs,
20(7), p.450.
DOI: https://doi.org/10.3390/md20070450.
Cottas, A.G., Teixeira, T.A., Cunha, W.R., Ribeiro, E.J. and de Souza Ferreira, J., 2022. Effect of glucose and sodium nitrate on the cultivation of
Nostoc sp. PCC 7423 and production of phycobiliproteins.
Brazilian Journal of Chemical Engineering, 39(1), pp.1-9.
DOI: https://doi.org/10.1007/s43153-021-00186-3.
Dąbrowski, P., Baczewska-Dąbrowska, A.H., Bussotti, F., Pollastrini, M., Piekut, K., Kowalik, W., Wróbel, J. and Kalaji, H.M., 2021. Photosynthetic efficiency of Microcystis ssp. under salt stress. Environmental and Experimental Botany, 186, p.104459. DOI: https://doi.org/10.1016/j.envexpbot.2021.104459.
El-Fayoumy, E.A., Shanab, S.M., Hassan, O.M. and Shalaby, E.A., 2023. Enhancement of active ingredients and biological activities of
Nostoc linckia biomass cultivated under modified BG-11
0 medium composition.
Biomass Conversion and Biorefinery, 13(7), pp.6049-6066.
DOI: https://doi.org/10.1007/s13399-021-01509-7.
El Shafay, S.M., Gaber, A., Alsanie, W.F. and Elshobary, M.E., 2021. Influence of nutrient manipulation on growth and biochemical constituent in
Anabaena variabilis and
Nostoc muscorum to enhance biodiesel production.
Sustainability, 13(16), p.9081.
DOI: https://doi.org/10.3390/su13169081.
Farajzadeh, S.S.M. and Zamir, S.M., 2025. Enhanced desalination of real brackish wastewater from a power plant and production of value-added products using a photosynthetic microbial fuel cell.
Desalination, 609, p.118889.
DOI: https://doi.org/10.1016/j.desal.2025.118889.
Gong, G., Wu, B., Liu, L., Li, J., Zhu, Q., He, M. and Hu, G., 2022. Metabolic engineering using acetate as a promising building block for the production of bio‐based chemicals.
Engineering Microbiology, 2(4), p.100036.
DOI: https://doi.org/10.1016/j.engmic.2022.100036.
Hotos, G.N. and Antoniadis, T.I., 2022. The effect of colored and white light on growth and phycobiliproteins, chlorophyll and carotenoids content of the marine cyanobacteria
Phormidium sp. and
Cyanothece sp. in batch cultures.
Life, 12(6), p.837.
DOI: https://doi.org/10.3390/life12060837.
Iranshahi, S., Nejadsattari, T., Soltani, N., Shokravi, S. and Dezfulian, M., 2014. The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Sciences, 13(4), pp.907-917.
Jha, S., Singh, V.K., Singh, A.P., Gupta, A., Rana, P. and Sinha, R.P., 2024. The radiant world of cyanobacterial phycobiliproteins: examining their structure, functions, and biomedical potentials.
Targets, 2(1), pp.32-51.
DOI: https://doi.org/10.3390/targets2010002.
Keithellakpam, O.S., Nath, T.O., Oinam, A.S., Thingujam, I., Oinam, G. and Dutt, S.G., 2015. Effect of external pH on cyanobacterial phycobiliproteins production and ammonium excretion.
Journal of Applied Biology and Biotechnology, 3, pp.38-42.
DOI: https://doi.org/10.7324/JABB.2015.3408.
Kim, S.M., Bae, E.H., Kim, J.Y., Kang, J.S. and Choi, Y.E., 2022. Mixotrophic cultivation of a native cyanobacterium,
Pseudanabaena mucicola GO0704, to produce phycobiliprotein and biodiesel.
Journal of Microbiology and Biotechnology, 32(10), p.1325.
DOI: https://doi.org/10.4014/jmb.2207.07008.
Kovač, D., Babić, O., Milovanović, I., Mišan, A. and Simeunović, J., 2017. The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources.
Applied Biochemistry and Microbiology, 53(5), pp.539-545.
DOI: https://doi.org/10.1134/S000368381705009X.
Lee, N.K., Oh, H.M., Kim, H.S. and Ahn, C.Y., 2017. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of
Nostoc sp. NK and simplified extraction by dark-cold shock.
Bioresource Technology, 227, pp.164-170.
DOI: https://doi.org/10.1016/j.biortech.2016.12.053.
Llopis, P., García-Abad, L., Pretel, M.T., Montero, M.A., Jordán, M.M. and Asencio, A.D., 2022. Effects of climate change on the production of polysaccharides and phycobiliproteins by
Nostoc commune Vaucher ex Bornet et Flahault.
International Journal of Environmental Research, 16(2), p.21.
DOI: https://doi.org/10.1007/s41742-022-00401-0.
Ma, R., Lu, F., Bi, Y. and Hu, Z., 2015. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium
Nostoc sphaeroides Kützing.
Biotechnology Letters, 37(8), pp.1663-1669.
DOI: https://doi.org/10.1007/s10529-015-1831-3.
Ma, J., Hu, J., Sha, X., Meng, D. and Yang, R., 2024. Phycobiliproteins, the pigment-protein complex form of natural food colorants and bioactive ingredients.
Critical Reviews in Food Science and Nutrition, 64(10), pp.2999-3017.
DOI: https://doi.org/10.1080/10408398.2022.2128714.
Noh, Y., Lee, H., Kim, M., Hong, S.J., Lee, H., Kim, D.M., Cho, B.K., Lee, C.G. and Choi, H.K., 2021. Enhanced production of photosynthetic pigments and various metabolites and lipids in the cyanobacteria
Synechocystis sp. PCC 7338 culture in the presence of exogenous glucose.
Biomolecules, 11(2), p.214.
DOI: https://doi.org/10.3390/biom11020214.
Pagels, F., Guedes, A.C., Amaro, H.M., Kijjoa, A. and Vasconcelos, V., 2019. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications.
Biotechnology Advances, 37(3), pp.422-443.
DOI: https://doi.org/10.1016/j.biotechadv.2019.02.010.
Richaud, C., Zabulon, G., Joder, A. and Thomas, J.C., 2001. Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the
nblA gene in
Synechocystis strain PCC 6803.
Journal of Bacteriology, 183(10), pp.2989-2994.
DOI: https://doi.org/10.1128/jb.183.10.2989-2994.2001.
Shanab, S.M., Mostafa, S.S., Shalaby, E.A. and Mahmoud, G.I., 2012. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities.
Asian Pacific Journal of Tropical Biomedicine, 2(8), pp.608-615.
DOI: https://doi.org/10.1016/S2221-1691(12)60106-3.
Sharma, L., Singh, A.K., Panda, B. and Mallick, N., 2007. Process optimization for poly-
β-hydroxybutyrate production in a nitrogen fixing cyanobacterium,
Nostoc muscorum using response surface methodology.
Bioresource Technology, 98(5), pp.987-993.
DOI: https://doi.org/10.1016/j.biortech.2006.04.016.
Sonani, R.R., Rastogi, R.P., Patel, R. and Madamwar, D., 2016. Recent advances in production, purification and applications of phycobiliproteins.
World Journal of Biological Chemistry, 7(1), p.100.
DOI: https://doi.org/10.4331/wjbc.v7.i1.100.
Solovchenko, A., Gorelova, O., Karpova, O., Selyakh, I., Semenova, L., Chivkunova, O., Baulina, O., Vinogradova, E., Pugacheva, T., Scherbakov, P. and Vasilieva, S., 2020. Phosphorus feast and famine in cyanobacteria: is luxury uptake of the nutrient just a consequence of acclimation to its shortage?.
Cells, 9(9), p.1933.
DOI: https://doi.org/10.3390/cells9091933.
Sudhakar, M.P., Maurya, R., Mehariya, S., Karthikeyan, O.P., Dharani, G., Arunkumar, K., Pereda, S.V., Hernández-González, M.C., Buschmann, A.H. and Pugazhendhi, A., 2024. Feasibility of bioplastic production using micro-and macroalgae-A review.
Environmental Research,
240, p.117465.
DOI: https://doi.org/10.1016/j.envres.2023.117465.
Tounsi, L., Ben Hlima, H., Hentati, F., Hentati, O., Derbel, H., Michaud, P. and Abdelkafi, S., 2023. Microalgae: a promising source of bioactive phycobiliproteins.
Marine Drugs, 21(8), p.440.
DOI: https://doi.org/10.3390/md21080440.