Optimizing Cultivation Parameters for Enhanced Chlorophyll and Phycobiliprotein Production in Nostoc muscorum

Document Type : Original Article

Authors

1 Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj Campus, Tehran, Iran

2 Department of Fisheries, Faculty of Natural Resources, University of Tehran

3 Department of Petroleum Microbiology, Research Institute of Applied Science, ACECR, Tehran, Iran

4 Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

10.48308/pae.2026.242914.1134

Abstract

Cyanobacteria are valuable producers of phycobiliproteins, water-soluble pigments with fluorescent, antioxidant, and bioactive properties, widely used as natural colorants and functional bioactive compounds. This research employed a definitive systematic design to systematically evaluate the effects of multiple environmental and nutritional factors, including nitrogen and phosphorus availability, salinity, carbon sources (glucose and acetate), and light/dark cycles (24:0 and 16:8 hours), on the production of phycobiliproteins, namely phycocyanin, allophycocyanin, phycoerythrin, and total phycobiliproteins in Nostoc muscorum. Chlorophyll a and phycobiliprotein levels were monitored over a 30-day period across 14 experimental runs. Among them, run 8 characterized by high nitrate (1000 mg/L) and phosphate (40 mg/L), low salinity (0.5% NaCl), low glucose (0.25%), absence of acetate, and a 16:8 h light/dark cycle, achieved the highest levels of chlorophyll a (5.02 ± 0.55 µg mg-1dw), phycocyanin (23.38 ± 1.35 µg mg-1dw), allophycocyanin (8.35 ± 0.44 µg mg-1dw), phycoerythrin (37.86 ± 1.45 µg mg-1dw), and total phycobiliproteins (69.59 ± 2.03 µg mg-1dw). Nitrogen exerted the strongest influence on total phycobiliproteins production (p = 0.0099), followed by phosphorus (p = 0.0154) and salinity (p = 0.0105). Glucose supplementation enhanced pigment synthesis under nutrient-replete conditions, whereas higher acetate concentrations showed an inhibitory effect. Photoperiod significantly affected chlorophyll a content (p < 0.05), with a 16:8 h light/dark cycle generally promoting higher accumulation, although its effect on total phycobiliproteins production was not significant (p = 0.1879). Overall, these findings provide a solid framework for optimizing cultivation conditions to maximize phycobiliprotein production in N. muscorum, and endorsing their application as natural antioxidant pigments and bioactive compounds in industrial biotechnology applications.

Keywords


Behzadian, Z., Khavari-Nejad, R., Soltani, N. and Dezfulian, M., 2020. Exopolysaccharide production from Nostoc sp. under different nutritional conditions. Plant, Algae, and Environment, 4(1), pp.508-522.
Bennett, A. and Bogobad, L., 1973. Complementary chromatic adaptation in a filamentous bluegreen alga. Journal of Cell Biology, 58(2), 419–435. DOI: https://doi.org/10.1083/jcb.58.2.419.
Borsari, R.R.J., Morioka, L.R.I., Ribeiro, M.L.L., Buzato, J.B. and Pinotti, M.H.P., 2007. Mixotrophic growth of Nostoc sp. on glucose, sucrose, and sugarcane molasses for phycobiliprotein production. Acta Scientiarum. Biological Sciences, 29(1), pp.9-13.
Caille, C., Duhamel, S., Latifi, A. and Rabouille, S., 2024. Adaptive responses of cyanobacteria to phosphate limitation: a focus on marine diazotrophs. Environmental Microbiology, 26(12), p.e70023. DOI: https://doi.org/10.1111/1462-2920.70023.
Chen, H., Qi, H. and Xiong, P., 2022. Phycobiliproteins—a family of algae-derived biliproteins: production, characterization and pharmaceutical potentials. Marine Drugs, 20(7), p.450. DOI: https://doi.org/10.3390/md20070450.
Cottas, A.G., Teixeira, T.A., Cunha, W.R., Ribeiro, E.J. and de Souza Ferreira, J., 2022. Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), pp.1-9. DOI: https://doi.org/10.1007/s43153-021-00186-3.
Dąbrowski, P., Baczewska-Dąbrowska, A.H., Bussotti, F., Pollastrini, M., Piekut, K., Kowalik, W., Wróbel, J. and Kalaji, H.M., 2021. Photosynthetic efficiency of Microcystis ssp. under salt stress. Environmental and Experimental Botany, 186, p.104459. DOI: https://doi.org/10.1016/j.envexpbot.2021.104459.
El-Fayoumy, E.A., Shanab, S.M., Hassan, O.M. and Shalaby, E.A., 2023. Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-110 medium composition. Biomass Conversion and Biorefinery, 13(7), pp.6049-6066. DOI: https://doi.org/10.1007/s13399-021-01509-7.
El Shafay, S.M., Gaber, A., Alsanie, W.F. and Elshobary, M.E., 2021. Influence of nutrient manipulation on growth and biochemical constituent in Anabaena variabilis and Nostoc muscorum to enhance biodiesel production. Sustainability, 13(16), p.9081. DOI: https://doi.org/10.3390/su13169081.
Farajzadeh, S.S.M. and Zamir, S.M., 2025. Enhanced desalination of real brackish wastewater from a power plant and production of value-added products using a photosynthetic microbial fuel cell. Desalination, 609, p.118889. DOI: https://doi.org/10.1016/j.desal.2025.118889.
Gong, G., Wu, B., Liu, L., Li, J., Zhu, Q., He, M. and Hu, G., 2022. Metabolic engineering using acetate as a promising building block for the production of bio‐based chemicals. Engineering Microbiology, 2(4), p.100036. DOI: https://doi.org/10.1016/j.engmic.2022.100036.
Hotos, G.N. and Antoniadis, T.I., 2022. The effect of colored and white light on growth and phycobiliproteins, chlorophyll and carotenoids content of the marine cyanobacteria Phormidium sp. and Cyanothece sp. in batch cultures. Life, 12(6), p.837. DOI: https://doi.org/10.3390/life12060837.
Iranshahi, S., Nejadsattari, T., Soltani, N., Shokravi, S. and Dezfulian, M., 2014. The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Sciences, 13(4), pp.907-917.
Jha, S., Singh, V.K., Singh, A.P., Gupta, A., Rana, P. and Sinha, R.P., 2024. The radiant world of cyanobacterial phycobiliproteins: examining their structure, functions, and biomedical potentials. Targets, 2(1), pp.32-51. DOI: https://doi.org/10.3390/targets2010002.
Johnson, E.M., Kumar, K. and Das, D., 2014. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresource Technology, 166, pp.541-547. DOI: https://doi.org/10.1016/j.biortech.2014.05.097.
Joun, J., Sirohi, R. and Sim, S.J., 2023. The effects of acetate and glucose on carbon fixation and carbon utilization in mixotrophy of Haematococcus pluvialis. Bioresource Technology, 367, p.128218. DOI: https://doi.org/10.1016/j.biortech.2022.128218.
Keithellakpam, O.S., Nath, T.O., Oinam, A.S., Thingujam, I., Oinam, G. and Dutt, S.G., 2015. Effect of external pH on cyanobacterial phycobiliproteins production and ammonium excretion. Journal of Applied Biology and Biotechnology, 3, pp.38-42. DOI: https://doi.org/10.7324/JABB.2015.3408.
Kim, S.M., Bae, E.H., Kim, J.Y., Kang, J.S. and Choi, Y.E., 2022. Mixotrophic cultivation of a native cyanobacterium, Pseudanabaena mucicola GO0704, to produce phycobiliprotein and biodiesel. Journal of Microbiology and Biotechnology, 32(10), p.1325. DOI: https://doi.org/10.4014/jmb.2207.07008.
Kovač, D., Babić, O., Milovanović, I., Mišan, A. and Simeunović, J., 2017. The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources. Applied Biochemistry and Microbiology, 53(5), pp.539-545. DOI: https://doi.org/10.1134/S000368381705009X.
Lee, N.K., Oh, H.M., Kim, H.S. and Ahn, C.Y., 2017. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresource Technology, 227, pp.164-170. DOI: https://doi.org/10.1016/j.biortech.2016.12.053.
Llopis, P., García-Abad, L., Pretel, M.T., Montero, M.A., Jordán, M.M. and Asencio, A.D., 2022. Effects of climate change on the production of polysaccharides and phycobiliproteins by Nostoc commune Vaucher ex Bornet et Flahault. International Journal of Environmental Research, 16(2), p.21. DOI: https://doi.org/10.1007/s41742-022-00401-0.
Ma, R., Lu, F., Bi, Y. and Hu, Z., 2015. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37(8), pp.1663-1669. DOI: https://doi.org/10.1007/s10529-015-1831-3.
Ma, J., Hu, J., Sha, X., Meng, D. and Yang, R., 2024. Phycobiliproteins, the pigment-protein complex form of natural food colorants and bioactive ingredients. Critical Reviews in Food Science and Nutrition, 64(10), pp.2999-3017. DOI: https://doi.org/10.1080/10408398.2022.2128714.
Noh, Y., Lee, H., Kim, M., Hong, S.J., Lee, H., Kim, D.M., Cho, B.K., Lee, C.G. and Choi, H.K., 2021. Enhanced production of photosynthetic pigments and various metabolites and lipids in the cyanobacteria Synechocystis sp. PCC 7338 culture in the presence of exogenous glucose. Biomolecules, 11(2), p.214. DOI: https://doi.org/10.3390/biom11020214.
Pagels, F., Guedes, A.C., Amaro, H.M., Kijjoa, A. and Vasconcelos, V., 2019. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), pp.422-443. DOI: https://doi.org/10.1016/j.biotechadv.2019.02.010.
Richaud, C., Zabulon, G., Joder, A. and Thomas, J.C., 2001. Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. Journal of Bacteriology, 183(10), pp.2989-2994. DOI: https://doi.org/10.1128/jb.183.10.2989-2994.2001.
Shanab, S.M., Mostafa, S.S., Shalaby, E.A. and Mahmoud, G.I., 2012. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pacific Journal of Tropical Biomedicine, 2(8), pp.608-615. DOI: https://doi.org/10.1016/S2221-1691(12)60106-3.
Sharma, L., Singh, A.K., Panda, B. and Mallick, N., 2007. Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Bioresource Technology, 98(5), pp.987-993. DOI: https://doi.org/10.1016/j.biortech.2006.04.016.
Sonani, R.R., Rastogi, R.P., Patel, R. and Madamwar, D., 2016. Recent advances in production, purification and applications of phycobiliproteins. World Journal of Biological Chemistry, 7(1), p.100. DOI: https://doi.org/10.4331/wjbc.v7.i1.100.
Solovchenko, A., Gorelova, O., Karpova, O., Selyakh, I., Semenova, L., Chivkunova, O., Baulina, O., Vinogradova, E., Pugacheva, T., Scherbakov, P. and Vasilieva, S., 2020. Phosphorus feast and famine in cyanobacteria: is luxury uptake of the nutrient just a consequence of acclimation to its shortage?. Cells, 9(9), p.1933. DOI: https://doi.org/10.3390/cells9091933.
Sudhakar, M.P., Maurya, R., Mehariya, S., Karthikeyan, O.P., Dharani, G., Arunkumar, K., Pereda, S.V., Hernández-González, M.C., Buschmann, A.H. and Pugazhendhi, A., 2024. Feasibility of bioplastic production using micro-and macroalgae-A review. Environmental Research, 240, p.117465. DOI: https://doi.org/10.1016/j.envres.2023.117465.
Tounsi, L., Ben Hlima, H., Hentati, F., Hentati, O., Derbel, H., Michaud, P. and Abdelkafi, S., 2023. Microalgae: a promising source of bioactive phycobiliproteins. Marine Drugs, 21(8), p.440. DOI: https://doi.org/10.3390/md21080440.