Diversity of Algae in Terrestrial Ecosystems of Northeastern Iran: A Focus on Agricultural and Horticultural Soil Crusts

Document Type : Original Article

Authors

1 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran

2 Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Tehran, ‎Iran

10.48308/pae.2026.243007.1135

Abstract

Biological Soil Crusts (BSCs) are formed by the activity of various groups of microorganisms such as green microalgae, cyanobacteria, fungi, and bacteria. Biological soil crusts are ecosystem engineers across ‎all terrestrial environments, especially in drylands; yet their resilience in intensively ‎managed, saline-alkaline agricultural and horticultural soils remains unexplored. This study characterized algal diversity in relation to selected soil biochemical properties of BSCs across nine agricultural and horticultural sites in Northeast Iran. For this purpose, pH, EC, and chlorophyll content were measured according to established methodologies. Soil chemical analyses ‎revealed high pH and electrical conductivity (EC) in some samples of biological soil ‎crusts from the studied sites. According to the results, Cyanophyta and Chlorophyta ‎were the dominant algal groups in all collected BSC samples in Northeastern Iran. Also, based on the results, a ‎significant negative correlation was found between soil pH and chlorophyll a content. ‎Although the EC level in soil was negatively correlated with chlorophyll content, the algal ‎community comprised extremophile taxa tolerant to these stressful conditions. In addition, the ‎number of identified taxa correlated negatively with soil pH and EC levels, and ‎positively with chlorophyll content. The ‎genera Chlorococcum from Chlorophyta and Phormidium (Cyanophyta) were dominant, ‎with their prevalence underscoring their documented salinity tolerance. Additionally, other identified ‎genera, such as Pseudanabaena, Nostoc, Calothrix, and a few diatom genera, further confirm the presence of stress-adapted flora. This study demonstrates that elevated soil pH and EC are key environmental filters that shape biological soil crusts' algal communities, selecting for a specialized, tolerant consortium.

Keywords


Ahlesaadat M, Riahi H, Shariatmadari Z, Hakimi Meybodi MH. (2017). A taxonomic study of cyanobacteria in wheat fields adjacent to industrial areas in Yazd province (Iran). Rostaniha. 18 (2): 107-121. DOI: http://DOI.org/10.22092/ BOTANY.2018.115930.
Ahmad MN, Anuar MI, Abd Aziz N, & Murdi AA. (2025). Function and application of Soil Electrical Conductivity (EC) sensor in agriculture: A Review. Advances in Agricultural and Food Research Journal, 6(1). DOI: https://DOI.org/10.36877/aafrj.a0000552.
Ahmad, M. N., Anuar, M. I., Abd Aziz, N., & Murdi, A. A. (2025). Function and application of Soil Electrical Conductivity (EC) sensor in agriculture: A Review. Advances in Agricultural and Food Research Journal, 6(1).
Ahmadi M, & Kamangar M. (2025). Classification of the new raster-based method for Iranian regional climate. Researches in Earth Sciences, 16(3), 71-90. DOI: https://Doi.org/10.48308/esrj.2025.238444.1253.
Alghanmi HA, & Jawad HM. (2018). Effect of Environmental Factors on Cyanobacteria Richness in Some Agricultural Soils. Geomicrobiology Journal, 36(1), 75–84. DOI: https://Doi.org/10.1080/01490451.2018.1517196.
Alghanmi HA, & Jawad HM. (2019). Effect of environmental factors on cyanobacteria richness in some agricultural soils. Geomicrobiology Journal, 36(1), 75-84. DOI: https://Doi.org/10.1080/01490451.2018.1517196.
Alghanmi, H. A., & Jawad, H. M. (2019). Effect of environmental factors on cyanobacteria richness in some agricultural soils. Geomicrobiology Journal36(1), 75-84.
Andersen RA. (2005). Algal culturing techniques. Elsevier academic Press. 578 pp. ISBN: 0080456502, 9780080456508.
Andersen, R. A. 2005. Algal culturing techniques. Elsevier academic Press. 578 pp.
Aslani E, Riahi H, Shariatmadari Z, & Bazzi F. (2014). The study of heterocystous cyanobacteria from paddy fields in Kalat Naderi district in north-east of Iran. The Iranian Journal of Botany, 20(2), 257-264. DOI: https://Doi.org/10.22092/ijb.2014.101684.
Assobhi B, Ennasry H, Latique S, Kara M, Alaoui Mhamdi M, & Bahhou J. (2024). Influence of salinity, nitrogen and phosphorus concentrations on the physiological and biochemical characteristics of two Chlorophyceae isolated from Fez freshwater, Morocco. Scientific Reports, 14(1), 8259. DOI: https://Doi.org/10.1038/s41598-024-58864-4.
Asulabh KS, Supriya G, & Ramachandra TV. (2012). Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp. and Chaetoceros sp. In National Conference on Conservation and Management of Wetland Ecosystems. School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala.
Belnap J, & Lange OL. (Eds.). (2001). Biological soil crusts: Structure, function, and management. Springer. DOI: https://Doi.org/10.1007/978-3-642-56475-8.
Belnap J, Büdel B, & Lange OL. (2001). Biological soil crusts: characteristics and distribution. Biological soil crusts: structure, function, and management. Springer International Publishing. 150: 3-30. DOI: https://Doi.org/10.1007/978-3-642-56475-8_1.
Belnap J, Büdel B, & Lange OL. (2001). Biological soil crusts: characteristics and distribution. In Biological soil crusts: structure, function, and management (pp. 3-30). Berlin, Heidelberg: Springer Berlin Heidelberg.‏ DOI: https://Doi.org/10.1007/978-3-642-56475-8.
Belnap J, Büdel B, & Lange OL. (2003). Biological soil crusts: characteristics and distribution. Biological soil crusts: structure, function, and management, 3-30. DOI: https://Doi.org/10.1007/978-3-642-56475-8_1.
Bethany J, Giraldo-Silva A, Nelson C, Barger NN, Garcia-Pichel F. (2019). Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl Environ Microbiol. 2019 Jul 18;85(15): e00735-19. DOI: https://DOI.org/10.1128/AEM.00735-19.
Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, ... & Weber B. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial ecology, 57, 229-247. DOI: https://DOI.org/10.1007/s00248-008-9449-9.
Caesar J, Tamm A, Ruckteschler N, Leifke AL, & Weber B. (2018). Revisiting chlorophyll extraction methods in biological soil crusts–methodology for determination of chlorophyll a and chlorophyll a+ b as compared to previous methods. Biogeosciences, 15(5), 1415-1424. DOI: ‌ https://DOI.org/10.5194/bg-15-1415-2018.
Chatchawan T, Komárek J, Strunecký O, Šmarda J, & Peerapornpisal Y. (2012). Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogamie, Algologie, 33(1), 41-59. DOI: https://DOI.org/10.7872/crya.v33.iss1.2011.041.
Cox EJ. (1996). Identification of Freshwater Diatoms from Live Material First Chapman and Hall. edition. London, Melbourne, Madras.‌ ISBN: 0412493802.
Cruz JD, Delattre C, Felpeto AB, Pereira H, Pierre G, Morais J, & Vasconcelos V. (2023). Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Scientific Reports13(1), 13561.‏ DOI: https://DOI.org/10.1038/s41598-023-40542-6
Etemadi-Khah A, Pourbabaee AA, Alikhani HA, Noroozi M, & Bruno L. (2017). Biodiversity of isolated cyanobacteria from desert soils in Iran. Geomicrobiology Journal34(9), 784-794. DOI: https://DOI.org/10.1080/01490451.2016.1271064.
Fazlutdinova AI, Allaguvatova RZ, & Gaysina LA. (2023). Ecotonic Communities of Diatoms in the Southeastern Part of the Kamchatka Peninsula. Earth, 4(2), 209-222. DOI: https://DOI.org/10.3390/earth4020011.
Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. (2013). Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340, 1574-1577. DOI: https://DOI.org/10.1126/science.1236404.
Ghorbani M. (2021). Geological setting and crustal structure of Iran. In The Geology of Iran: Tectonic, Magmatism and Metamorphism (pp. 1-22). Cham: Springer International Publishing.‏ DOI: https://DOI.org/10.1007/978-3-030-71109-2_1.
Ghotbi-Ravandi AA, Neyshabouri FA, Aghashariatmadri Z, & Farahabadi SM. (2021). Phormidium sp. improves growth, auxin content and nutritional status of wild barley (Hordeum spantaneum L.). Plant, Algae, and Environment, 5(1), 616-623. DOI: https://DOI.org/10.48308/jpr.2021.222483.1007.
Hakkoum Z, Minaoui F, Douma M, Mouhri K, & Loudiki M. (2020). DIVERSITY AND SPATIAL DISTRIBUTION OF SOIL CYANOBACTERIA ALONG AN ALTITUDINAL GRADIENT IN MARRAKESH AREA (MOROCCO). Applied Ecology & Environmental Research, 18(4). DOI: http://dx.DOI.org/10.15666/aeer/1804_55275545‏.
Harper K T, & Marble J R. (1988). A role for nonvascular plants in management of arid and semiarid rangelands. In Vegetation science applications for rangeland analysis and management (pp. 135-169). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-3085-8_7.
Hashemi Devin M. (2013). Evaluate the MEI Effect on Winter Precipitation in Northern Khorasan. Journal of Climate Research, 1392(13), 31-44.‌
Hassanzadeh M, Sepehr A, Farzam M, & Bahreini M. (2018). Distribution of biological soil crust along surface evolution of an arid alluvial fan. Researches in Earth Science, 9 (1), pages 1-13. DOI: https://DOI.org/10.29252/esrj.9.1.1.
Hecky RE, & Kilham P. (1973). Diatoms in alkaline, saline lakes: ecology and geochemical implications 1. Limnology and Oceanography, 18(1), 53-71. DOI: https://DOI.org/10.4319/lo.1973.18.1.0053.
Irankhahi P, Riahi H, Shariatmadari Z, & Aghashariatmadari Z. (2022). Diversity and distribution of heterocystous cyanobacteria across solar radiation gradient in terrestrial habitats of Iran. DOI: 10.22092/BOT.J.IRAN.2023.360711.1336.
Jassey VEJ, Walcker R, Kanlol P, Gelsen S, Heger T, Lamentowicz M, Hamard S, & Lara E. (2022). Contribution of soil algae to the global carbon cycle. New Phytologist, 234(1), 64-76. DOI: https://DOI.org/10.1111/nph.17950.
Johansen JR, Strunecký O, Bohunická M, Čapková KČ, Raabová L, Dvořák P, & Komárek J. (2017). A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria). Fottea.
John DM, Whitton BA, & Brook AJ. (Eds.). (2002). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge University Press. ISBN 0521 77051 3 hardback.
John, D. M., Whitton, B. A., & Brook, A. J. (Eds.). (2002). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge University Press.
Jusko BM, & Johansen JR. (2023). Description of six new cyanobacterial species from soil biocrusts on San Nicolas Island, California, in three genera previously restricted to Brazil. Journal of Phycology. DOI: https://DOI.org/10.1111/jpy.13332.
Kakeh J, Gorji M, Mohammadi MH, Asadi H, Khormali F, & Sohrabi M. (2020). Studying the Effects of Biocrusts on Soil Water Dynamic and Evaporation. Iranian Journal of Soil and Water Research, 51(5), 1255-1264.‏ DOI: https://DOI.org/10.22059/ijswr.2020.292760.668400.
Kakeh J, Gorji M, Mohammadi MH, Asadi H, Khormali F, Sohrabi M, & Cerdà A. (2020). Biological soil crusts determine soil properties and salt dynamics under arid climatic condition in Qara Qir, Iran. Science of the total environment, 732, 139168.‏ DOI: https://DOI.org/10.1016/j.scitotenv.2020.139168.
Kakeh J, Gorji M, Sohrabi M, Tavili A, Pourbabaee AA. (2018). Effects of biological soil crusts on some physicochemical characteristics of rangeland soils of Alagol, Turkmen Sahra, NE Iran.  Soil and Tillage Research. 181: 152-159. DOI: https://DOI.org/10.1016/j.still.2018.04.007.
Karimi A, Tahmourespour A, & Hoodaji M. (2023). The formation of biocrust and improvement of soil properties by the exopolysaccharide-producing cyanobacterium: a biogeotechnological study. Biomass Conversion and Biorefinery, 13(17), 15489-15499.‏ DOI: https://DOI.org/10.1007/s13399-022-02336-0.
Komárek J, & Anagnostidis K. (2005). Cyanoprokaryota: Oscillatoriales. Tl. 2 / 2nd Part. In J. Komárek & K. Anagnostidis (Eds.), Süßwasserflora von Mitteleuropa (Vol. 19/2, illustrated ed., 759 pp.). Elsevier Spektrum Akademischer Verlag.
Komárek J, Kaštovský J, Mareš J, & Johansen JR. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia, 86, 295-335. DOI: https://DOI.org/10.23855/preslia.2014.295.
Kumar D, Kaštánek P, & Adhikary S P. (2016). Diversity of cyanobacteria in biological crusts on arid soils in the Eastern region of India and their molecular phylogeny. Current Science, 1999-2004. DOI: https://DOI.org/10.18520/cs/v110/i10/1994-1999.
Liu R, Li K, Zhang H, Zhu J, & Joshi D. (2014). Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. Journal of Microbiology, 52(11), 898-907. DOI: https://DOI.org/10.1007/s12275-014-4075-3.
Liu, R., Li, K., Zhang, H., Zhu, J., & Joshi, D. (2014). Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. Journal of Microbiology52(11), 898-907.
Minaoui F, Hakkoum Z, Douma M, Mouhri K, & Loudiki M. (2021). Diatom communities as bioindicators of human disturbances on suburban soil quality in arid Marrakesh area (Morocco). Water, Air, & Soil Pollution, 232(4), 146. DOI: https://DOI.org/10.1007/s11270-021-05094-3.
Mostafavi, J., Fallah-Ghalhari, G., & Baaghideh, M. (2023). Evaluation of the consequences of climate change on the drought of Khorasan Razavi province using the SPEI index.
Mostafavi, J., Fallah-Ghalhari, G., & Baaghideh, M. (2023). Evaluation of the consequences of climate change on the drought of Khorasan Razavi province using the SPEI index.
Muñoz-Martín MÁ, Becerra-Absalón L, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P. (2019). Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytol. 221, 123-141. DOI: https://DOI.org/10.1111/nph.15355.
Novakovskaya IV, Patova EN, Dubrovskiy YA, & Novakovskiy AB. (2022). Soil algae in pine forests of the middle taiga (Komi Republic, Russia). Diversity, 14(2), 136. DOI: https://DOI.org/10.3390/d14020136.
Nowruzi B, Fahimi H, & Ordodari, N. (2017). Molecular phylogenetic and morphometric evaluation of Calothrix sp. N42 and Scytonema sp. N11. Rostaniha, 18(2), 210-221. DOI: https://DOI.org/10.22092/ros.2017.113708.
Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, & Fierer N. (2020). The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 6(4), eaax8787. DOI: https://DOI.org/10.1126/sciadv.aax8787.
Patova E, Novakovskaya I, Gusev E, & Martynenko N. (2023). Diversity of cyanobacteria and algae in biological soil crusts of the Northern Ural mountain region assessed through morphological and metabarcoding approaches. Diversity15(10), 1080.‏
Pauwels JM, Van Ranst E, Verloo M, et al. (1992) Soil Science Laboratory Manual. Methods of Soil and Plant Analysis, Equipment, Management of Glassware and Chemicals. Agricultural Publications, No. 28, 180 p.
Pauwels, J.M., Van Ranst, E., Verloo, M., et al. (1992) Soil Science Laboratory Manual. Methods of Soil and Plant Analysis, Equipment, Management of Glassware and Chemicals. Agricultural Publications, No. 28, 180 p.
Pradhan B, Patra S, Dash SR, Maharana S, Behera C, & Jena M. (2020). Antioxidant responses against aluminum metal stress in Geitlerinema amphibium. SN Applied Sciences2(5), 800
Prescott GW. (1962). Algae of the Western Great Lakes area. With an illustrated key to the genera of desmids and freshwater diatoms. Revised [Second] edition. pp. [i]-xiii, 1-977. Dubuque, Iowa: Wm. C. Brown Company Publishers 135 South Locust Street.
 Rezaee M, Ghotbi-Ravandi AA, Hasssani SB, & Soltani N. (2019). Phormidium improves seed germination and growth parameters of Trifolium alexandrinum in hexadecane-contaminated soil. Journal of Phycological Research3(1), 312-325. DOI: https://DOI.org/10.29252/JPR.3.1.312
Righini H, Francioso O, Martel Quintana A, & Roberti R.(2022). Cyanobacteria: a natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth. Horticulturae8(1), 58. DOI: https://DOI.org/10.3390/horticulturae8010058.
Rindi F, & López-Bautista JM. (2008). Diversity and ecology of Trentepohliales (Ulvophyceae, Chlorophyta) in French Guiana. Cryptogamie, Algologie, 29(1), 13-43.
Rotondo L, Mora VTe, mporetti PBea, mud SPedro, zo F.(2023). The use of an algal bioindicator in the assessment of different chemical remediation strategies for PAH-contaminated soils and sediments. J. Environ. Chem. Eng. 11, 110098. DOI: https://DOI.org/10.1016/j.jece.2023.110098
Roy AG, ogoiN, YasminF, FarooqM. (2022). The use of algae for environmental sustainability: trends and future prospects. Environ. Sci. Pollut. Res. 29, 40373-40383. DOI: https://DOI.org/10.1007/s11356-022-19636-7.
Sadooghi N, Panahi Y, Delshad A, Maurin M, & Dadar M. (2025). Epidemiological analysis of human brucellosis in North Khorasan province, Iran (2018–2023): a six-year multicenter retrospective study. BMC Infectious Diseases, 25(1), 1083.‏ https://DOI.org/10.1186/s12879-025-11516-y.
Samolov E, Baumann K, Büdel B, Jung P, Leinweber P, Mikhailyuk T, & Glaser K. (2020). Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach. Microorganisms, 8(7), 1047.‌ DOI: https://DOI.org/10.3390/microorganisms8071047.
Samolov E, Baumann K, Büdel B, Jung, PLeinweber P, Mikhailyuk T, & Glaser K. (2020). Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach. Microorganisms8(7), 1047.‏ DOI: https://DOI.org/10.3390/microorganisms8071047.
Sepehr A, Hassanzadeh M, RodriguezCaballero E. (2019). The protective role of cyanobacteria on soil stability in two Aridisols in northeastern Iran. Geoderma Regional. 16: e00201. DOI: https://DOI. org/10.1016/j.geodrs.2018.e00201.
Shaaban AES M, Mansour H, & Saber A A. (2017). Soil Algae of El-Farafra Oasis (The Western Desert, Egypt) and N2-fixation Efficiency of Five Heterocytous Cyanophytes. Egyptian Journal of Botany, 57(3), 517-524.‌10.21608/ejbo.2017.858.1063. DOI: 10.21608/ejbo.2017.858.1063
Shafiei R, Firouzeh N, & Rahimi MT. (2024). Serological and molecular survey of Toxoplasma gondii in aborted livestock fetuses from Northeast Iran. BMC Research Notes17(1), 290.Belnap, J. (2003). The world at your feet: Desert soil crusts. Frontiers in Ecology and the Environment, 1, 181-189. DOI: https://DOI.org/10.1186/s13104-024-06915-4.
Singh Y, Singh G, Singh DP, & Khattar JIS. (2022). A checklist of blue-green algae (Cyanobacteria) from Punjab, India. Journal of threatened Taxa14(3), 20758-20772. DOI: https://DOI.org/10.11609/jott.6754.14.3.20758-20772
Stanier RY, Kunisawa R, Mandel, M. (1971). Purification and properties of
unicellular blue- green algae (order Chroococcales). Bacteriology Review, 35: 171-
205.
Tashlykova NA and Afonina EY. (2022). Diversity of plankton communities of chloride lakes of Southeastern Transbaikalia. In IOP Conference Series: Earth and Environmental Science. 1112 (1): 012108. IOP Publishing. DOI: http:// DOI:10.1088/1755-1315/1112/1/012108.
Thomas AD, Bhagya S, & Thomas SC. (2017). Soil algae in the southern Kalahari are edaphic specialists and indicate soil properties. Journal of Arid Environments, 144, 114-121. DOI: https://DOI.org/10.1016/j.jaridenv.2017.04.012.
Varshney P, Mikulic P, Vonshak  A,  Beardall J, & Wangikar PP. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource technology, 184, 363-372. DOI: https://DOI.org/10.1016/j.biortech.2014.11.040‏.
Wang Y, Jia J, Chi Q, Li Y, Wang H, Gong Y., ... & Hu Q. (2022). Critical assessment of the filamentous green microalga Oedocladium carolinianum for astaxanthin and oil production. Algal Research, 61, 102599. DOI:  https://DOI.org/10.1016/j.algal.2021.102599.
Weber B, Belnap J, Büdel B, Antoninka AJ, Barger NN, Chaudhary VB, Darrouzet-Nardi A, Eldridge DJ, Faist AM, Ferrenberg S, Havrilla CA, Huber-Sannwald E, Issa OM, Maestre FT, Reed SC, Rodriguez-Caballero E, Tucker C, Young KE, Zhang Y., ... Bowker MA. (2022). What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews, 97, 1768-1785. DOI:  https://DOI.org/10.1111/brv.12862.
Williams A, BuckB, Soukup D and Merkler D. (2010). Geomorphic controls of biological soil crust distribution, Mojave Desert (USA), Paper presented at the 19th World Congress of Soil Science.
Xu  HF,  Raanan  H,  Dai GZ,  Oren N, Berkowicz S, Murik O, Kaplan  A, Qiu BS.(2021). Reading and surviving the harsh conditions in desert biological soil crust: the cyanobacterial viewpoint. FEMS Microbiol. Rev. 45, fuab036. DOI:  https://DOI.org/10.1093/femsre/fuab036
Younesi H, Hassani SB, Ghotbi Ravandi AA, & Soltani N. (2019). Plant growth promoting potential of Phormidium sp. ISC108 on seed germination, growth indices and photosynthetic efficiency of maize (Zea mays L.). Journal of Phycological Research, 3(2), 375-385. DOI:https://DOI.org/10.29252/JPR.3.2.375
Zafar AM, Javed MA, Hassan  AA, Sahle-Demessie E, & Harmon S. (2022). Biodesalination using halophytic cyanobacterium Phormidium keutzingianum from brackish to the hypersaline water. Chemosphere, 307, 136082. DOI:  https://DOI.org/10.1016/j.chemosphere.2022.136082
Zahra Z, Choo DH, Lee  H, & Parveen A. (2020). Cyanobacteria: review of current potentials and applications. Environments, 7(2), 13. DOI: https://DOI.org/10.3390/environments7020013.
Zancan S, Trevisan R, & Paoletti MG. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems & Environment, 112(1), 1-12. DOI: https://DOI.org/10.1016/j.agee.2005.07.002.