The Effect of Sucrose, Potassium, and Glutamate on the Fatty Acid Profile of Physcomitrella patens

Document Type : Original Article

Authors

1 Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University

2 Department of Plant Biology and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University

3 Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University

4 Shahid Beheshti University

10.48308/pae.2026.242582.1130

Abstract

Physcomitrella patens, a long-evolved bryophyte, produces a range of polyunsaturated fatty  acids (PUFAs) through multiple desaturation and elongation processes. P. patens requires few resources to grow and proliferate in fatty acid production. Media engineering can effectively improve the valuable PUFAs, and here we have tested the effects of two engineered media on the changes in the fatty acid profiles of P. patens. A commercially available physcomitrium (cv. Gransden) was grown for 20 days at 25 °C under a 16: 8 h light (2000 Lux): dark cycle. The responses of two different media including treatment 1 with increased sucrose concentration of 30 g/L and  treatment 2 composes elevated levels of sucrose (62 g/L), potassium (0.8 g/L), and glutamate (1.42 g/L) were analyzed through fatty acid profile measurements using GC-FID. Pronounced changes including an increase in capric acid elevation in treatment 1 and elevated levels in palmitic and stearic acids in treatment 2 were detected in saturated fatty acids (SFAs), highlighting the significant impact of culture medium composition. Simultaneous alterations of sucrose, potassium and glutamate levels are particularly effective in enhancing the production of SFAs. The results of these experiments are expected to provide valuable insights into optimizing fatty acid production in P. patens, advancing biotechnological applications, and expanding its use in industrial and nutritional fields. Future research should aim to refine nutrient concentrations, explore the molecular mechanisms of fatty acid biosynthesis, and assess environmental factors to enhance and scale up production.

Keywords


Aluko, O.O., Li, C., Wang, Q. and Liu, H., 2021. Sucrose utilization for improved crop yields: A review article. International Journal of Molecular Sciences, 22(9), p.4704.  https://doi.org/10.3390/ijms22094704.
Ashton, N.W. and Cove, D.J., 1977. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Molecular and General Genetics MGG154(1), pp.87-95. https://doi.org/10.1007/BF00265581.
Chodok, P., 2022. Response surface modeling and optimization of media nutrients for enhanced production of y-linolenic Acid in the moss Physcomitrella patens using response surface methodology. https://doi:10.14456/jrmutp.2021.5.
Donoghue, P.C., Harrison, C.J., Paps, J. and Schneider, H., 2021. The evolutionary emergence of land plants. Current Biology, 31(19), pp.R1281-R1298. https://doi.org/10.1016/j.cub.2021.07.038.
Dzurendova, S., Zimmermann, B., Tafintseva, V., Kohler, A., Ekeberg, D. and Shapaval, V., 2020. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Applied Microbiology and Biotechnology, 104(18), pp.8065-8076. https://doi.org/10.1007/s00253-020-10821-7.
Folch, J., Lees, M. and Stanley, G.S., 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry226(1), pp.497-509. https://doi.org/10.1016/S0021-9258(18)64849-5.
Gebremariam, S.N. and Marchetti, J.M., 2018. Economics of biodiesel production. Energy Conversion and Management168, pp.74-84. https://doi.org/10.1016/j.enconman.2018.05.002
Hann, E.C., Harland-Dunaway, M., Garcia, A.J., Meuser, J.E. and Jinkerson, R.E., 2023. Alternative carbon sources for the production of plant cellular agriculture: a case study on acetate. Frontiers in Plant Science14, p.1104751. https://doi.org/10.3389/fpls.2023.1104751.
Horn, A., Pascal, A., Lončarević, I., Volpatto Marques, R., Lu, Y., Miguel, S., Bourgaud, F., Thorsteinsdóttir, M., Cronberg, N., Becker, J.D. and Reski, R., 2021. Natural products from bryophytes: from basic biology to biotechnological applications. Critical Reviews in Plant Sciences40(3), pp.191-217. https://doi.org/10.1080/07352689.2021.1911034.
Kaewsuwan, S., Bunyapraphatsara, N., Cove, D.J., Quatrano, R.S. and Chodok, P., 2010. High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ5-elongase gene. Bioresource Technology, 101(11),  pp.4081-4088. https://doi.org/10.1016/j.biortech.2009.12.138.
Kangani, C.O., Kelley, D.E. and DeLany, J.P., 2008. New method for GC/FID and GC–C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. Journal of Chromatography B873(1), pp.95-101. https://doi.org/10.1016/j.jchromb.2008.08.009.
Kikukawa, H., Sakuradani, E., Ando, A., Shimizu, S. and Ogawa, J., 2018. Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review. Journal of Advanced Research11, pp.15-22. https://doi.org/10.1016/j.jare.2018.02.003.
Kozubal, M. A., Macur, R. E., & Inskeep, W. P. 2019. U.S. Patent No. 10,344,306. Washington, DC: U.S. Patent and Trademark Office.
Lang, D., Van Gessel, N., Ullrich, K.K. and Reski, R., 2016. The genome of the model moss Physcomitrella patens. In Advances in Botanical Research (Vol. 78, pp. 97-140). Academic Press. https://doi.org/10.1016/BS.ABR.2016.01.004.
Liao, H.S., Chung, Y.H. and Hsieh, M.H., 2022. Glutamate: A multifunctional amino acid in plants. Plant Science318, p.111238. https://doi.org/10.1016/j.plantsci.2022.111238.
Modarres, M., Esmaeilzadeh Bahabadi, S. and Taghavizadeh Yazdi, M.E., 2018. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose. Cytotechnology70(2), pp.741-750. https://doi.org/10.1007/s10616-017-0178-0.
Nekrasov, E.V., Svetashev, V.I., Khrapko, O.V. and Vyssotski, M.V., 2019. Variability of fatty acid profiles in ferns: Relation to fern taxonomy and seasonal development. Phytochemistry162, pp.47-55. https://doi.org/10.1016/j.phytochem.2019.02.015.
Rasool, S., Geetha, T., Broderick, T.L. and Babu, J.R., 2018. High fat with high sucrose diet leads to obesity and induces myodegeneration. Frontiers in Physiology9, p.1054. https://doi.org/10.3389/fphys.2018.01054.
Resemann, H.C., Herrfurth, C., Feussner, K., Hornung, E., Ostendorf, A.K., Gömann, J., Mittag, J., van Gessel, N., Vries, J.D., Ludwig-Müller, J. and Markham, J., 2021. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. Nature Plants7(2), pp.219-232. https://doi.org/10.1038/s41477-020-00844-3.
Reski, R. and Abel, W.O., 1985. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta165(3), pp.354-358. https://doi.org/10.1007/BF00392232.
Sung, Y., Yu, Y.C. and Han, J.M., 2023. Nutrient sensors and their crosstalk. Experimental & Molecular Medicine55(6), pp.1076-1089. https://doi.org/10.1038/s12276-023-01006-z
Szczuko, M., Pokorska-Niewiada, K., Kwiatkowska, L., Nawrocka-Rutkowska, J., Szydłowska, I. and Ziętek, M., 2022. Level of potassium is associated with saturated fatty acids in cell membranes and influences the activation of the 9 and 13 HODE and 5 HETE Synthesis pathways in PCOS. Biomedicines10(9), p.2244. https://doi.org/10.3390/biomedicines10092244.
Teng, F., Wang, P., Yang, L., Ma, Y. and Day, L., 2017. Quantification of fatty acids in human, cow, buffalo, goat, yak, and camel milk using an improved one-step GC-FID method. Food Analytical Methods10(8), pp.2881-2891. https://doi.org/10.1007/s12161-017-0852-z.
Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E. and Brawley, S.H., 2017. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology29(2), pp.949-982.
https://doi.org/10.1007/s10811-016-0974-5.
Yan, L.A.N., Qiang, D.U.A.N., Hong, Y.A.N.G. and Tian, L.I., 2023. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars. Journal of Integrative Agriculture22(7), pp.2025-2040. https://doi.org/10.1016/j.jia.2022.09.020.
Zhai, Z., Keereetaweep, J., Liu, H., Xu, C. and Shanklin, J., 2021. The role of sugar signaling in regulating plant fatty acid synthesis. Frontiers in Plant Science12, p.643843. https://doi.org/10.3389/fpls.2021.643843.
Zhang, D., Atochina-Vasserman, E.N., Lu, J., Maurya, D.S., Xiao, Q., Liu, M., Adamson, J., Ona, N., Reagan, E.K., Ni, H. and Weissman, D., 2022. The unexpected importance of the primary structure of the hydrophobic part of one-component ionizable amphiphilic Janus dendrimers in targeted mRNA delivery activity. Journal of the American Chemical Society144(11), pp.4746-4753. https://doi.org/10.1021/jacs.2c00273.
Zhang, W. 2017. Effects of potassium on fruit quality and its association with metabolic pathway of trehalose 6-phosphate in apple (Doctoral dissertation, Northwest Agricultural and Forestry University).
Zhu, B.H., Zhang, R.H., Lv, N.N., Yang, G.P., Wang, Y.S. and Pan, K.H., 2018. The role of malic enzyme on promoting total lipid and fatty acid production in Phaeodactylum tricornutumFrontiers in Plant Science9, p.826. https://doi.org/10.3389/fpls.2018.00826.
Zhu, X., Liu, X., Liu, T., Wang, Y., Ahmed, N., Li, Z. and Jiang, H., 2021. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant communications2(5). https://doi.org/10.1016/j.xplc.2021.100229.