A systematic survey on medicinal algae

Document Type : Original Article

Authors

1 Department of Marine Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran,

2 Gonbad Kavous University

3 Department of Biology, Faculty of Basic Science, Bonbad Kavous University, Gonbad Kavous, Iran

4 Agriculture and Natural Resources Research Center of Hormozgan, Bandar Abbas, Iran.

10.48308/pae.2026.237555.1094

Abstract

Algae are a diverse group of photosynthetic organisms. Besides oxygen production, they contain various compounds that give them nutritional, industrial, and pharmaceutical applications. In spite of the long history of using algae for medicinal purposes, there is no comprehensive information on medicinal algae in the literature. The aim of this review was to provide a systematic list of algae with medicinal properties. We reviewed more than 480 references. The studied algae were listed in a Table according to the systematic classification. General information on the algae phyla was presented and the medicinal taxa of each phylum were discussed. Results showed that about 500 algal taxa have medicinal potential, most of them are macroscopic and belong to the class Rhodophyta, followed by Phaeophyta and Chlorophyta. Gracilaria from Rhodophyta, Sargassum from Phaeophyta and Caulerpa from Chlorophyta are the genera having more taxa with medicinal properties. Asparagopsis armata, Jania rubens, Porphyra haitanensis, Porphyra yezoensis (Rhodophyta); Ascophyllum nodosum, Ecklonia cava, Fucus vesiculosus, Laminaria japonica, Sargassum fusiforme (Syn: Hizikia fusiformis), Sargassum horneri, Sargassum pallidum, Sargassum siliquastrum, Undaria pinnatifida (Phaeophyta); Codium fragile and Ulva lactuca (Chlorophyta) are the most cited taxa with various therapeutic effects. Their therapeutic effects are related to their polysaccharides, amino acids, fatty acids, pigments and some other compounds. However, it seems more clinical trials have to be done to confirm their applicability in some special disease.

Keywords


Abd El-Hack, ME., Abdelnour, S., Alagawany, M., Abdo, M., Sakr, MA., Khafaga, AF., Mahgoub, SA., Elnesr, SS. and Gebriel, MG., 2019. Microalgae in modern cancer therapy: Current knowledge. Biomedicine & Pharmacotherapy, 111, pp. 42-50. DOI: DOI: https://doi.org/10.1016/j.biopha.2018.12.069.
Abe, K., Hattori, H. and Hirano, M., 2007. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry, 100, pp. 656–661.
Adrien, A., Bonnet, A., Dufour, D., Baudouin, S., Maugard, T. and Bridiau, N., 2017. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydrate Polymers, 157, pp. 1306–1314.
Aisya, GS., Ching, TS. and Yee, GS., 2014. Antioxidative, anticholinesterase and anti-neuroinflammatory properties of Malaysian brown and green seaweeds. International Jouranl of Indunesian Manufactur Engineering, 8, pp. 895–906.
Allmendinger, A., Spavieri, J., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., Guiry, M., Blunden, G. and Tasdemir D., 2010. Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three british and irish red algae. Phytotherpy Research, 24(7), 1099 103. DOI: DOI: https://doi.org/10.1002/ptr.3094.
Arata, PX., Quintana, I., Canelón, DJ., Vera, BE., Compagnone, RS. and Ciancia, M., 2015. Chemical structure and anticoagulant activity of highly pyruvylated sulfated galactans from tropical green seaweeds of the order Bryopsidales. Carbohydrate Polymers, 122, pp. 376–386.
Arman, M., Soleimani, S., Zarei, Z., Sohrabipour, J. and Asadzadeh, M., 2015. Assessment of antibacterial effect of some marine macroalgae against human pathogen. Journal of Aquatic Ecology, 5(2), pp. 139-144.
Barsanti, L. and Gualtieri, P., 2006. Algae: Anatomy, Biochemsitry and Biotechnology. CRC Press, Taylor & Francis group, New York, USA. 291 pp.
Bharat, N., Irshad, Md., Rizvi, MA. and Fatma, T., 2013. Antimicrobial and cytotoxic activities of cyanobacteria. International Journal of Innovative Research in Science, Engineering and Technology, 2(9), pp. 4329-4343.
Bhat, VB. and Madyastha, KM., 2000. C-phycocyanin: apotent peroxyl radical scavenger in vivo and in vitro. Biochemical and Biophysical Research Communications, 275, pp. 20-25.
Bianco, EM., de Oliveira, SQ., Rigotto, C., Tonini, ML., Guimaraes, TR., Bittencourt, F., Gouvea, LP., Aresi, C., de Almeida, RMT., Moritz, GMI., 2013. Anti-infective potential of marine invertebrates and seaweeds from the Brazilian coast. Molecules, 18, pp. 5761–5778.
Borazjani, NJ., Tabarsa, M., You, S. and Rezaei, M., 2018. Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. International Journal of Biological Macromolecules, 109, pp. 793–802.
Buono, S., Langellotti, AL., Martello, A., Bimonte, M., Tito, A., Carola, A., Apone, F., Colucci, G. and Fogliano, V., 2012. Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Archives of Dermatological Research, 304, pp. 755–764.
Burja, AM., Banaigs, B., Abou-Mansour, E., Burgess, JG. and Wright, PC., 2001. Marine cyanobacteria—a prolific source of natural products. Tetrahedron, 57, pp. 9347–9377. DOI: https://doi.org/10.1016/S0040-4020(01)00931-0.
Cardozo, KHM., Marques, LG., Carvalho, VM., Carignan, MO., Pinto, E., Marinho‐Soriano, E. and Colepicolo, P., 2011. Analyses of photoprotective compounds in red algae from the Brazilian coast. Revista Brasileira de Farmacognosia, 21, pp. 202–208.
Carreto, JI., Carignan, MO., Daleo, G. and De Marco, SG., 1990. Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium excavatum: UV-protective compounds? Journal of Plankton Research, 12, pp. 909-921.
Carreto, JI., De Marco, SD. and Lutz, VA., 1989. UV-absorbing pigments in the dinoflagellates Alexandrium excavatum and Prorocentrum micans. Effects of light intensity, in: T. Okaichi T, Anderson DM, Nemoto T. (Eds.). Red Tides, Biology, Environmental Science and Toxicology. Elsevier, New York. 333-336.
Chale-Dzul, J., Freile-Pelegrin, Y., Robledo, D. and Moo-Puc, R., 2017. Protective effect of fucoidans from tropical seaweeds against oxidative stress in HepG2 cells.  Journal of Applied Phycology, 29, pp. 2229–2238.
Chandini, SK., Ganesan, P. and Bhaskar, N., 2007. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 97, pp. 707-713.
Chen, K., Ríos, JJ., Pérez-Gálvez, A. and Roca, M., 2017. Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 228, pp. 625-633.
Chénais, B., 2021. Algae and microalgae and their bioactive molecules for human health. Molecules, 26(4), 1185. DOI: https://doi.org/10.3390/molecules26041185. PMID: 33672160; PMCID: PMC7926806.
Choi, JY., Hwang, CJ., Lee, HP., Kim, HS., Han, SB. and Hong JT., 2017. Inhibitory effect of ethanol extract of Nannochloropsis oceanica on lipopolysaccharide-induced neuroinflammation, oxidative stress, amyloidogenesis and memory impairment. Oncotarget, 8, pp. 45517–45530.
Corpuz, MJAT., Osi, MO. and Santiago, LA., 2013. Free radical scavenging activity of Sargassum siliquosum J. G. Agardh. International Food Research Journal, 20(1), pp. 291-297.
Cosenza, VA., Navarro, DA., Ponce, NMA. and Stortz, CA., 2017. Seaweed polysaccharides: structure and applications. In Industrial Applications of Renewable Biomass Products. Past, Present, and Future, eds S. N., Goyanes, and N. B. D’Accorso (Cham: Springer Int.), 75–116. DOI: https://doi.org/10.1007/978-3-319- 61288-1_3
Costa, LS., Fidelis, GP., Cordeiro, SL., Oliveira, RM., Sabry, DA. and Câmara, RBG., 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64, pp. 21–28.
Cui, Y., Liu, X., Li, S., Hao, L., Du, J., Gao, D., Kang, Q. and Lu, J., 2018. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. International Journal of Biological Macromolecules, 117, pp. 256–263.
Da Silva Machado, FL., Pacienza-Lima, W., Duarte, HM., Rossi-Bergmann, B., Gestinari, LM., Fujii, MT., Kaiser, CR. and Soares, AR., 2014. Chemical diversity and antileishmanial activity of crude extracts of Laurencia complex (Ceramiales, Rhodophyta) from Brazil. Reviews of Brasilian Farmacognosy, 24, pp. 635–643.
Dai, Y., Jiang, Y., Lu, Y., Yu, J. and Kang, M., 2021. Fucoxanthin-rich fraction from Sargassum fusiformis alleviates particulate matter-induced inflammation in vitro and in vivo. Toxicological Reports, 8, pp. 349–358.
Daub, CD., Mabate, B., Malgas, S. and Pletschke, BI., 2020. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, alpha-glucosidase. International Journal of Biological Macromolecules151, pp. 412–20. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.161.
De la Coba, F., Aguilera, J., de Gálvez, MV., Álvarez, M., Gallego, E., Figueroa, FL. and Herrera, E., 2009. Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein‐70 expression in mouse skin by topical application of algal UV‐absorbing compounds. Journal of Dermatological Science, 55, pp. 161–169. http://dx.doi.org/10.1016/j. jdermsci.2009.06.004.
De Souza, MCR., Marques, CT., Dore, CMG., da Silva, FRF., Rocha, HAO. and Leite, EL., 2007. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19, pp. 153–160.
Demay, J., Bernard, C., Reinhardt, A. and Marie, B., 2019. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Marine Drugs, pp. 17: 320.
Denis, C., Morancais, M., Li, M., Deniaud, E., Gaudin, P., Wielgosz-Collin, G., Barnathan, G., Jaouen, P. and Fleurence, J., 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chemistry, 119, pp. 913–917.
Dey, B., Lerner, DL., Lusso, P., Boyd, MR., Elder, JH. and Bergeri, EA., 2000. Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus Type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. Journal of Virology, 74, pp. 4562-4569.
Dillon, JG. and Castenholz, RW., 1999. Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: implications for early photosynthetic life. Journal of Phycology, 35, pp. 673–681.
Dos Santos, AO., Britta, EA., Bianco, EM., Ueda-Nakamura, T., Filho, BPD., Pereira, RC. and Nakamura, CV., 2011. 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent. Marine Drugs9, pp. 2369-2383. DOI: https://doi.org/10.3390/md9112369.
Duval, B., Shetty, K. and Thomas, WH., 2000. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. Journal of Applied Phycology, 11, pp. 559–566.
El-Sheekh, M., El Sabbagh, S. and Abd El Samea, B., 2016. Control of some microbial skin diseases by some marine algal extract. Journal of Agricultural Chemistry and Biotechnology7, pp. 67–74.
Erfani, N., Nazemosadat, Z. and Moein, M., 2015. Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D. Pharmacutical Research, 7, pp. 133–137. DOI: https://doi.org/10.4103/0974-8490.150539.  
Fouladvand, M., Barazesh, A., Farokhzad, F., Malekizadeh, H. and Sartavi, K., 2011. Evaluation of in vitro anti-leishmanial activity of some brown, green and red algae from the Persian Gulf. European Review of Medical and Pharmacological Sciences, 15, pp. 597–600.
Gantar, M., Dhandayuthapani, S. and Rathinavelu, A., 2012. Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. Journal of Medicinal Foods, 15, pp. 1091–1095. DOI: https://doi.org/10.1089/jmf.2012.0123.
García Parra, M., Monzote Fidalgo, CL., Castañeda Pasarón, CO., García Delgado, N. and Pérez Hernández, A., 2012. Antileishmanial activity of six extracts from marine organisms. Revista Cubana de Medicina Tropical, 64(1), 61-64. PMID: 23444628.
Garcia-Pichel, F. and Castenholz, RW., 1993. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimation of their screening capacity. Applied Environmental Microbiology, 59, pp. 163–169.
Garcia-Pichel, F., Wingard, CE. and Castenholz, RW., 1993. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Applied Environmental Microbiology, 59, pp. 170- 176.
Genovese, G., Tedone, L., Hamann, M. and Morabito, M., 2009. The mediterranean red alga Asparagopsis: a source of compounds against Leishmania. Marine Drugs, 7, pp. 361–366.
Ghareeb, DA., Abd-Elgwad, A., El-Guindy, N., Yacout, G. and Zaatout, HH., 2021. Ulva lactuca methanolic extract improves oxidative stress-related male infertility induced in experimental animals. Archives of Physiology and Biochemistry, 127(5), pp. 397-405. DOI: https://doi.org/10.1080/13813455.2019.1645698. PMID: 31364420.
Gheda, SF., El-Adawib, HL. and EL-Deebc, NM., 2016. Antiviral profile of brown and red seaweed polysaccharides against hepatitis C virus. Iranian Journal of Pharmaceutical Research, 15, pp. 483–491.
Gröniger, A., Hallier, C. and Hader, D-P., 1999. Influence of UV radiation and visible light on Porphyra umbilicalis: photoinhibition and MAA concentration. Journal of Applied Phycology, 11, pp. 437–445.
Gröniger, A., Sinha, RP., Klisch, M. and Häder, DP., 2000. Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae — a database. Journal of Photochemistry and Photobiology B: Biology, 58, pp. 115-122. DOI: https://doi.org/10.1016/S1011-1344(00)00112-3
Guiry, MD. and Guiry, GM., 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. DOI: https://www.algaebase.org.
Gupta, S. and Abu-Ghannam, N., 2011b. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science and Technology, 22, pp. 315-326.
Güven, KC., Coban, B. and Sezik, E., 2019. Anticoagulant and antilipaemic activities of polysaccharides from marine algae. Journal of Black Sea/ Mediterranean Environment, 25, pp. 22–257.
Hagino, H. and Saito, M., 2010. Use of Algal Proteins in Cosmetics. European Patent, EP1433463.
Hannach, G. and Sigleo, AC., 1998. Photoinduction of UV-absorbing com-pounds in six species of marine phytoplankton. Marine Ecology Progress Series, 174, pp. 207–222.
Heo, SJ., Ko, SC., Kang, SM., Cha, SH., Lee, SH., Kang, DH., Jung, WK., Affan, A., Oh, C. and Jeon, YJ., 2010. Inhibitory effect against UV-B radiation-induced cell damage. Food Chemical Toxicology, 48, pp. 1355–1361.
Holtkamp, AD., Kelly, S., Ulber, R. and Lang, S., 2009. Fucoidans and fucoidanas esfocus on techniques for molecular structure elucidation and modification of marine polysaccharides. Applied Microbiology Biotechnology, 82, pp. 1–11. DOI: https://doi.org/10.1007/s00253-008-1790-x. 
Hwang, P-A., Hung, Y-L. and Chien, S-Y., 2015. Inhibitory activity of Sargassum hemiphyllum sulfated polysaccharide in arachidonic acid-induced animal models of inflammation. Journal of Food Drug Anals, 23, pp. 49–56
Ismail, MM., Alotaibi, BS., El-Sheekh, MM., 2020. Therapeutic uses of red macroaglae. Molecules, 25, 4411. DOI: https://doi.org/10.3390/molecules25194411.
Ismail, NN., Diab, MH. and Elkomy, RG., 2021. Algal Bioactive Compounds and Their biological activities. International Journal of Pharmaceutical Research, 13(2), pp. 1440-1452. DOI: https://doi.org/10.31838/ijpr/2021.13.02.198.
Jassbi, AR., Mohabati, M., Eslami, S., Sohrabipour, J. and Miri, R., 2013. Biological activity and chemical constituents of red and brown algae from the Persian Gulf. Iranian Journal of Pharmaceutical Research, 12(3), pp. 339–48.
Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y. and Li, B., 2017. Phycocyanin, a potential drug for cancer treatment. Journal of Cancer, 8, pp. 3416–3429. DOI: https://doi.org/10.7150/jca.21058.
Jiang, Z., Hama, Y., Yamaguchi, K. and Oda, T., 2012. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. Journal of Biochemistry, 151, pp. 65–74.
Kang, KA., Bu, HD., Park, DS., Go, GM., Jee, Y., Shin, T. and Hyun, JW., 2005. Antioxidant activity of ethanol extract of Callophyllis japonica. Phytotherapy Research, 19(6), pp. 506-510. DOI: https://doi.org/10.1002/ptr.1692.
Karsten, U., Franklin, LA., Liining, K. and Wiencke, C., 1998. Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta). Planta, 205, pp. 257-262.
Karsten, U., Maier, J. and Garcia-Pichel, F., 1998. Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquatic Microbiology and Ecology, 16, pp. 37–44.
Karsten, U., Sawall, T., Hanelt, D., Bischof, K., Figueroa, FL., Flores-Moya, A., Wiencke, C., 1998a. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Botanica Marina, 41, pp. 443–453.
Karsten, U., Sawall, T. and Wiencke, C., 1998b. A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycological Research, 46, pp. 271–279.
Khan, MN., Choi, JS., Lee, MC., Kim, E., Nam, TJ., Fujii, H. and Hong, Y., 2008. Anti-inflammatory activities of methanol extracts from various seaweed species. Journal of Environmental Biology, 29, pp. 465–469.
Khanavi, M., Bagheri, Toulabi, P., Abai, MR., Sadati, N., Hadjiakhoondi, F., Hadjiakhoondi, A. and Vatandoost, H., 2011. Larvicidal activity of marine algae, Sargassum swartzii and Chondria dasyphylla, against malaria vector Anopheles stephensi. Journal of Vector Borne Disease, 48(4), pp. 241-244.
Khanavi, M., Nabavi, M., Sadati, N., Shams Ardekani, M., Sohrabipour, J., Nabavi, SMB., Ghaeli, P. and Ostad, SN., 2010. Cytotoxic activity of some marine brown algae against cancer cell lines. Biological Research, 43(1), pp. 31-37.
Kim, M., Li, YX., Dewapriya, P., Ryu, B. and Kim, SK., 2013. Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Reports, 46, pp. 398–403.
Kim, S. and Himaya, SWA., 2011. Medicinal effects of phlorotannins from marine brown algae. Advances in Food and Nutrition Research, 64, pp. 97-109. DOI: https://doi.org/10.1016/B978-0-12-387669-0.00008-9
Kim, SJ., Woo, S., Yun, H., Yum, S., Choi, E., Do, JR., Jin, HJ., Kim, D., Lee, S. and Lee, T., 2005. Total phenolic contents and biological activities of Korean seaweed extracts. Food Science and Biotechnology, 14, pp. 798-802.
Kim, Y-M., Kim, H-Y., Jang, J-T. and Hong, S., 2023. Preventive effect of Ecklonia cava extract on DSS-Induced colitis by elevating intestinal barrier function and improving pathogenic inflammation. Molecules28, 8099. DOI: https://doi.org/10.3390/molecules28248099.
Kitano, M., Matsukawa, R. and Karube, I., 1997. Changes in eicosapentaenoic acid content of Navicula saprophilla, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. Journal of Applied Phycology, 9, pp. 559 – 563.
Kolsi, RBA., Fakhfakh, J., Sassi, S., Elleuch, M. and Gargouri, L., 2018. Physico-chemical characterization and beneficial effects of seaweed sulfated polysaccharide against oxydatif and cellular damages caused by alloxan in diabetic rats. International Journal of Biological Macromolecules, 8(117), pp. 407–417.
Kravchenko, AO., Anastyuk, SD., Sokolova, EV., Isakov, VV., Glazunov, VP., Helbert, W. and Yermak, IM., 2016. Structural Analysis and Cytokine-Induced Activity of Gelling Sulfated Polysaccharide from the Cystocarpic Plants of Ahnfeltiopsis Flabelliformis. Carbohydrate Polymers, 151, pp. 523–534.
Kuda, T., Tsunekawa, M., Goto, H. and Araki, Y., 2005. Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. Journal of Food Composition and Analysis, 18(7), pp. 625-633. DOI: https://doi.org/10.1016/j.jfca.2004.06.015.
Kumar, BR., Mathimani, T., Sudhakar, MP., Rajendran, K., Nizami, A., Brindhadevi, K. and Pugazhendhi, A., 2021. A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 138, 110649. DOI: https://doi.org/10.1016/j.rser.2020.110649.
Lakshmi, V., Khare, P., Misra, P., Srivastava, MN. and Dube, A., 2015. Antileishmanial potential of Chondrococcus hornemanni against experimental visceral leishmaniasis extraction, fractionation and isolation procedure. Journal of Marine Biology & Oceanography, 3(4), 1000137. http://dx.doi.org/10.4172/2324-8661.1000137.
Lee, DG., Park, SY., Chung, WS., Park, JH., Hwang, E., Mavlonov, GT., Kim, IH., Kim, KY. and Yi, TH., 2015. Fucoidan prevents the progression of osteoarthritis in Rats. Journal of Medicinal Food, 18, pp. 1032–1041.
Lee, S., Youn, K., Kim, DH., Ahn, MR., Yoon, E., Kim, OY. and Jun, M., 2019. Anti-neuroinflammatory property of phlorotannins from Ecklonia cava on Aβ25-35-induced damage in PC12 Cells. Marine Drugs, 17, 7.
Lee, YS., Shin, KH., Kim, BK. and Lee, S., 2004. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Archives of Pharmacal Research, 27, pp. 1120-1122.
Li, N., Liu, X., He, X., Wang, S., Cao, S., Xia, Z., Xian, H., Qin, L. and Mao, W., 2017. Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydrate Polymers, 159, pp. 195–206.
Li, Y-X., Wijesekaraa, I., Li, Y. and Kim, S-K., 2011. Phlorotannins as bioactive agents from brown algae. Process Biochemistry, 46, pp. 2219- 2224.
Liewert, I., Ehrig, K. and Alban, S., 2017. Effects of fucoidans and heparin on reactions of neutrophils induced by IL-8 and C5a. Carbohydrate Polymers, 165, pp. 462–469.
Lira, MLF., Lopes, R., Gomes, AP., Barcellos, G., Verícimo, M., Osako, K., Ortiz-Ramirez, FA., Ramos, CJB., Cavalcanti, DN., Teixeira, VL. and Amaral, V., 2015. Anti-leishmanial activity of Brazilian green, brown, and red algae. Journal of Applied Phycology, 28, pp. 591–598.
Liu, M., Hansen, PE. and Lin, X., 2011. Bromophenols in marine algae and their bioactivities. Marine Drugs, 9, pp. 1273–1292. DOI: https://doi.org/10.3390/md9071273. 
Liu, M., Liu, Y., Cao, M-J., Liu, G-M., Chen, Q., Sun, L. and Chen, H., 2017. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydrate Polymers, 172, pp. 294–305.
Luo, M., Shao, B., Nie, WX., Wei, X., Li, Y., Wang, B-L., He, Z-Y., Liang, Z., Ye, T-H. and Wei, Y-Q., 2015. Antitumor and adjuvant activity of lamb-dacarrageenan by stimulating immune response in cancer immunotherapy. Scientific Repors, 5, 12. DOI: https://doi.org/10.1038/srep11062. 
Ma, WW., Li, L. and Zhou, GF., 2013. In vitro immunoregulatory and antitumor activity of sulfated polysaccharides from Sargassum kjellmanianum. Shipin Kexue, 34, pp. 270-274.
Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y. and Jing, K., 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 109, pp. 282– 296.
Manlusoc, JKT., Hsieh, C-L., Hsieh, C-Y., Salac, ESN., Lee, Y-T. and Tsai, P-W., 2019. Pharmacologic application potentials of sulfated polysaccharide from marine algae. Polymers, 11(8), 1163. DOI: https://doi.org/10.3390/polym11071163.
Marchant, HJ., Davidson, AT. and Kelly, GJ., 1991. UV-B protecting compounds in the marine alga Phaeocystis pouchetti from Antarctica. Marine Biology, 109, pp. 391-395.
Massironi, A., Morelli, A., Grassi, L., Puppi, D., Braccini, S., Maisetta, G., Esin, S., Batoni, G., Della Pina, C. and Chiellini, F., 2019. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles. Carbohydrate Polymers, 203, pp. 310–321.
Mehra, R., Bhushan, S., Bast, F. and Singh, S., 2019. Marine macroalga Caulerpa: role of its metabolites in modulating cancer signaling. Molecular Biology Reports, 46, pp. 3545-3555. DOI: https://doi.org/10.1007/s11033-019-04743-5.
Mekinić, IG., Skroza, D., Šimat, V., Hamed, I., Čagalj, M. and Perković, ZP. 2019. Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules, 9, 244. DOI: https://doi.org/10.3390/biom9060244.
Moein, S., Moein, M., Ebrahimi, N., Farmani, F., Sohrabipour, J. and Rabiei, R., 2015. Extraction and determination of protein content and antioxidant properties of ten algae from Persian Gulf. International Journal of Aquatic Science, 6(2), pp. 29-38.
Moheimanian, N., Mirkhani, H., Purkhosrow, A., Sohrabipour, J. and Jassbi, AR., 2023. In Vitro and In Vivo antidiabetic, α-Glucosidase inhibition and antibacterial activities of three brown algae, Polycladia myricaPadina antillarum, and Sargassum boveanum, and a red alga, Palisada perforata from the Persian Gulf. Iranian Journal of Pharmceutical Research, 22(1), e133731. DOI: https://doi.org/10.5812/ijpr-133731.
Moheimanian, N., Mirkhani, H., Sohrabipour, J. and Jassbi, AR., 2022. Inhibitory potential of six brown algae from the Persian Gulf on α-Glucosidase and In Vivo antidiabetic effect of Sirophysalis trinodis. Iranian Journal of Medical Science, 47(5), pp. 484-493. DOI: https://doi.org/10.30476/IJMS.2021.91258.2245. PMID: 36117578; PMCID: PMC9445867.
Morán-Santibañez, K., Peña-Hernández, MA., Cruz-Suárez, LE., Ricque-Marie, D., Skouta, R., Vasquez, AH., Rodríguez-Padilla, C. and Trejo-Avila, L., 2018. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses, 10, 465.
Moreda-Piñeiro, A., Peña-Vázquez, E. and Bermejo-Barrera, P., 2012. Significance of the presence of trace and ultratrace elements in seaweeds. In: Kim, SK., editor. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons, Chichester, UK; pp.116–170.
Murugan, K. and Iyer, VV., 2013. Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cellular & Developmental Biology- Animal, 49, pp. 324–334.
Namvar, F., Mohamad, R., Baharara, J., Zafar-Balanejad, S., Fargahi, F. and Rahman, HS., 2013. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). BioMed Research International, 604787.
Natrah, F., Yosoff, FM., Shariff, M., Abas, F. and Mariana, NS., 2007. Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19(6), pp. 711–718.
Necas, J. and Bartosikova, L., 2013. Carrageenan, A Review. Veterinarni Medicina, 58, pp. 187–205. DOI: https://doi.org/10.17221/6758-
Nguyen, TH., Nguyen, TH., Nguyen, VM., Nguyen, TLP., Tran, TVA., Do, AD. and Kim, SM., 2019. Antidiabetic and antioxidant activities of red seaweed Laurencia dendroidea. Asian Pacific Journal of Tropical Biomedicine, 9, pp. 501–509. DOI: https://doi.org/10.4103/2221-1691.271723.
Noviendri, D., Jaswir, I., Salleh, HM., Taher, M., Miyashita, K. and Ramli, N., 2011. Fucoxanthin extraction and fatty acid analysis of Sargassum binderi and S. duplicatum. Journal of Medicinal Plant Research, 5(11), pp. 2405-2412.
Okimura, T., Jiang, Z., Liang, Y., Yamaguchi, K., Oda, T., 2019. Suppressive effect of ascophyllan HS on postprandial blood sugar level through the inhibition of α-Glucosidase and stimulation of glucagon-like peptide-1 (GLP-1) secretion. International Journal of Biological Macromolecules, 125, pp. 453–458.
Oliveira, E., Alveal, K. and Anderson, RJ., 2000. Mariculture of the agar-producing gracilarioid red algae. Reviews in Fisheries Science8(4), pp. 345-377. DOI: https://doi.org/ 10.1080/10641260008951116.
Palanisamy, S., Vinosha, M., Marudhupandi, T., Rajasekar, P. and Prabhu, NM., 2017. In Vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydrate Polymers, 170, pp. 296–304.
Pandian, P., Selvamuthukumar, S., Manavalan, R. and Parthasarathy, V., 2011. Screening of antibacterial and antifungal activities of red marine algae Acanthaphora spicifera (Rhodophyceae). Journal of Biomedical Science Research3, pp. 444–448.
Papenfuss, GF., 1951. Phaeophyta, in: Smith, G. M., Ed. Manual of phycology. Chronica Botanica, Waltham, MA. pp. 119–158.
Peng, Y., Wang, Y., Wang, Q., Luo, X., He, Y. and Song, Y., 2018. Hypolipidemic effects of sulfated fucoidan from Kjellmaniella crassifolia through modulating the cholesterol and aliphatic metabolic pathways. Journal of Functional Foods51, pp. 8-15. DOI: https://doi.org/ 10.1016/j.jff.2018.10.013
Pérez-Recalde, M., Matulewicz, MC., Pujol, CA. and Carlucci, MJ., 2014. In Vitro and in Vivo Immunomodulatory Activity of Sulfated Polysaccharides from Red Seaweed Nemalion helminthoides. International Journal of Biological Macromolecules, 63, pp. 38–42.
Pirian, K., Jeliani, ZZ., Arman, M., Sohrabipour, J. and Yousefzadi, M., 2020. Proximate Analysis of Selected Macroalgal Species from the Persian Gulf as a Nutritional Resource. Tropical Life Science Research, 31(1), pp. 1-17.  DOI: https://doi.org/10.21315/tlsr2020.31.1.1
Pirian, K., Moein, S., Sohrabipour, J., Rabiei, R., Blomster, J., 2017. Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf. Journal of Applied Phycology, 29(6), pp. 3151–3159. DOI: https://doi.org/10.1007/s10811-017-1152-0.
Pirian, K., Piri, K., Sohrabipour, J., Blomster, J., 2018. Three species of Ulva (Ulvophyceae) from the Persian Gulf as potential sources of protein, essential amino acids and fatty acids. Phycological Research, 66(2), pp. 149-154. DOI: https://doi.org/10.1111/pre.12212.
Ponce, NM. and Stortz, CA., 2020. A comprehensive and comparative analysis of the Fucoidan compositional data across the Phaeophyceae. Frontiers in Plant Science, 11, pp. 1-25. DOI: https://doi.org/10.3389/fpls.2020.556312
Prabhu, PN., Ashokkumar, P. and Sudhandiran, G., 2009. Antioxidative and antiproliferative effects of astaxanthin during the initiation stages of 1,2- dimethyl hydrazine-induced experimental colon carcinogenesis. Fundamental and Clinical Pharmacology, 23, pp. 225–234.
Proteau, PL., Gerwick, WH., Garcia-Pichel, F. and Castenholz, RW., 1993. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia, 49, pp. 825–829.
Pugh, N., Ross, SA., ElSohly, HN., ElSohly, MA., Pasco, DS., 2001. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flosaquae and Chlorella pyrenoidosa. Planta Medica, 67, pp. 737–742.
Qiang, H., Zhengyu, H., Cohen, Z., Richmond, A., 1997. Enhancement of eicosapentaenoic acid (EPA) and g-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). European Journal of Phycology, 32, pp. 81 – 86.
Quesada, A. and Vincent, WF., 1997. Strategies of adaptation by Antarctic yanobacteria to ultraviolet radiation. European Journal of Phycology, 32, pp. 335–342.
Ramezanpour, Z., Ghanbari Pirbasti, F. and Rasouli Dogaheh, S., 2021. Bioactivity potential of Gracilaria salicornia, Padina boergesenii, Polycladia myrica: antibacterial, antioxidant and total phenol assays. Journal of Phycological Research, 5(1), pp. 597-615.
Ramya, VP. and Muralitharan, G., 2019. Evaluation of antibacterial activity of cyanobacteria isolated from fresh water ecosystem of Tiruchirappalli district, Tamilnadu, India. Veerasamy & Gangatharan RJLBPCS, 5(2), 331.
Rao, PP., Rao, PS. and Karmarkar, SM., 1986. Antibacterial substances from brown algae. II. Efficiency of solvents in the evaluation of antibacterial substances from Sargassum johnstonii Setchell et Gardner. Botanica Marina, 29, pp.503-507.
Renaud, SM., Parry, DL. and Thinh, LV., 1994. Microalgae for use in tropical aquaculture: I. Gross chemical and fatty acid composition of twelve species of microalgae from the North Territory, Australia. Journal of Applied Phycology, 6, pp. 337 – 345.
Rengasamy, KRR., Amoo, SO., Aremu, AO., Stirk, WA., Gruz, J., Šubrtová, M., Doležal, K. and Van Staden, J., 2015. Phenolic profiles, antioxidant capacity, and acetylcholinesterase inhibitory activity of eight South African seaweeds. Journal of Applied Phycology, 27, pp. 1599–1605.
Riegger, L. and Robinson, D., 1997. Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis Antarctica. Marine Ecology Progreess Series, 160, pp. 13–25.
Robbins, RA., Bauld, J. and Chapman, DJ. 1998. Chemistry of the sheath of the cyanobacterium Lyngbya aestuarii Lieb. Cryptogamie Algologie, 19, pp. 169–178.
Rodrigues, D., Alves, C., Horta, A., Pinteus, S., Silva, G., Culioli, G., Thomas, OP. and Pedrosa, R., 2015. Antitumor and antimicrobial potential of bromoditerpenes isolated from the Red Alga, Sphaerococcus coronopifoliusMarine Drugs13, pp.713–726.
Rupali, B. and Sharma, PK., 2021. Effect of UV-B radiation on physiological and biochemical changes in a freshwater cyanobacterium, Scytonema hofmannii. Environmental and Experimental Biology, 19, pp. 89–96. http://doi.org/10.22364/eeb.19.09.
Sabina, H., Tasneem, S., Kausar, Y., Choudhary, MI. and Aliya, R., 2005. Antileishmanial activity in the crude extract of various seaweed from the coast of Karachi, Pakistan. Pakistan Journal of Botany, 37, pp. 163–168.
Sadati, N., Khanvai, M., Mahrokh, A., Nabavi, SMB., Sohrabipour, J. and Hadjiakhoondi, A., 2011. Comparison of antioxidant activity and total phenolic contents of some Persian Gulf marine algae. Journal of Medicinal Plants, 10(37), pp. 73-79.
Saleh, B. and Al-Mariri, A., 2018. Antifungal activity of crude seaweed extracts collected from Lattakia Coast, Syria. Journal of Fisheries and Aquatic Science, 13, pp. 49–55.
Seo, M-J., Lee, O-H., Choi, H-S., Lee, B-Y., 2012. Extract from edible red seaweed (Gelidium amansii) inhibits lipid accumulation and ros production during differentiation in 3T3-L1 cells. Preventive Nutrition and Food Science, 17, pp. 129–135. DOI: DOI: https://doi.org/10.3746/pnf.2012.17.2.129. 
Shao, P., Chen, X. and Sun, P., 2013. In Vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. International Journal of Biological Macromolecules, 62, pp. 155–161.
Sheikhakbari-Mehr, R., 2016. Bioactivity potential of some marine algae from south of Iran. Journal of Aquatic Ecology, 6(3), pp. 1-9.
Shibata, T., Ishimaru, K., Kawaguchi, S., Yoshikawa, H., Hama, Y., 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 20(5), pp. 705-711. DOI: DOI: https://doi.org/10.1007/s10811-007-9254-8.
Singh, A., Singh, SP. and Bamezai, R., 1999. Inhibitory potential of Chlorella vulgaris (E-25) on mouse skin papillomagenesis and xenobiotic detoxication system. Anticancer Research, 19, pp. 1887–1891.
Sinha, RP., Klisch, M., Gröniger, A., Häder, DP., 1998. Ultraviolet‐absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. Journal of Photochemistry and Photobiology B: Biology, 47, pp. 83–94. DOI: http://dx.doi.org/10.1016/S1011– 1344(98)00198–5.
Soares, DC., Szlachta, MM., Teixeira, VL., Soares, AR., Saraiva, EM., 2016. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs. Marine Drugs, 14(9), 163. DOI: DOI: https://doi.org/10.3390/md14090163. PMID: 27618071; PMCID: PMC5039534.
Sommaruga, R. and Garcia-Pichel, F., 1999. UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high mountain lake. Archiv fur Hydrobiologie, 144, pp. 255–269.
Spavieri, J., Allmendinger, A., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., Guiry, MD., Gerald, B., Tasdemir, D., 2010. Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (Phaeophyceae) from British and Irish waters. Phytotherapy Research, 24, pp. 1724–1729.
Spavieri, J., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., Blunden, G. and Tasdemir, D., 2010. Antiprotozoal, antimycobacterial and cytotoxic potential of some British green algae. Phytotherapy Research, 24, pp. 1095–8.
Sudharsan, S., Subhapradha, N., Seedevi, P., Shanmugam, V., Madeswaran, P., Shanmugam, A. and Srinivasan, A., 2015. Antioxidant and Anticoagulant Activity of Sulfated Polysaccharide from Gracilaria debilis (Forsskal). International Journal of Biological Macromolecules, 81, pp. 1031–1038.
Surayot, U., Lee, JH., Park, W. and You, S., 2016. Structural Characteristics of Polysaccharides Extracted from Cladophora glomerata Kützing Affecting Nitric Oxide Releasing Capacity of RAW 264.7 Cells. Bioactive Carbohydrates and Dietary Fibre, 7, pp. 26–31.
Süzgeç-Selçuk, S., Mericli, AH., Guven, KC., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., Tasdemir, D., 2011. Evaluation of Turkish seaweeds for antiprotozoal, antimycobacterial and cytotoxic activities. Phytotherapy Research. 25, pp. 778–783.
Taheri, A., Ghaffari, M., Houshmandi, S. and Namavari, MM., 2017. Investigation of the anticancer and antioxidant activity of the brown algae (Cystoseira indica) extract against the colorectal cancer cells. Feyz, 21(4), pp. 317-325.
Takematsu, H. and Seiji, M., 1984. Effect of macrophages on elimination of dermal melanin from the dermis. Archives of Dermatological Research, 276, pp. 96–98.
Tan, CK. and Johns MR., 1996. Screening of diatoms for heterotrophic eicosapentaenoic acid production. Journal of Applied Phycology, 8, pp. 59 – 64.
Tan, L., Williamson, RT., Gerwick, WH., Watts, KH., Mcgough, K. and Jacobs, R., 2000. Cis and trans, transceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. Journal of Organic Chemistry, 65, pp. 419–425. DOI: DOI: https://doi.org/10.1021/jo991165x. 
Tan, LT., 2007. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68, pp. 954–979. DOI: DOI: https://doi.org/10.1016/j. phytochem.2007.01.012.
Tang, L., Chen, Y., Jiang, Z., Zhong, S., Chen, W., Zheng, F. and Shi, G., 2017. Purification, Partial Characterization and Bioactivity of Sulfated Polysaccharides from Grateloupia livida. International Journal of Biological Macromolecules, 94, pp. 642–652.
Telford, WG., Moss, MW., Morseman, JP., Allnutt, FCT., 2001. Cryptomonad algal phycobiliproteins as luorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry, 44, pp.16–24.
Thanigaivel, S., Vijayakumar, S., Mukherjee, A., Chandrasekaran, N., Thommas, J., 2014. Antioxidant and antibacterial activity of Chaetomorpha antennina against shrimp pathogen Vibrioparahaemolyticus. Aquaculture, 433, pp. 467–475. DOI: DOI: https://doi.org/10.1016/j.aquaculture.2014.07.003
Thevanayagam, H., Mohamed, SM., Chu, WL., 2014. Assessment of UVB-photoprotective and antioxidative activities of carrageenan in keratinocytes. Journal of Applied Phycology, 26, pp. 1813–1821.
Turian G., 1985. Primary colonisation of concrete walls by a UV-protectively pigmented Chrysocapsa (cyanobacteria). Saussurea, 16, pp. 43–48.
Tziveleka, L-A., Pippa, N., Georgantea, P., Ioannou, E., Demetzos, C., Roussis, V., 2018. Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme. International Journal of Biological Macromolecules, 118, pp. 69–75.
Vairappan, CS., 2004. Antibacterial activity of major secondary metabolites found in four species of edible green macroalgae genus Caulerpa. Asian Journal of Microbiology Biotechnology and Environmental Science, 6, pp. 197–201.
Vázquez, AI., Sánchez, CMD., Delgado, NG., Alfonso, AMS., Ortega, YS. and Sánchez, HC., 2011. Anti-inflammatory and analgesic activities of red seaweed Dichotomaria obtusata. Brazilian Journal of Pharmaceutical Sciences, 47, pp. 111–118.
Wang, L., Je, J., Huang, C., Oh, J., Fu, X., Wang, K., Ahn, G., Xu, J., Gao, X. and Jeon Y., 2022. Anti inflammatory effect of sulfated polysaccharides isolated from Codium fragile In Vitro in RAW264.7 macrophages and In Vivo in Zebrafish. Marine Drugs, 20(6), pp. 391. DOI: DOI: https://doi.org/10.3390/md20060391.
Wang, N., Manabe, Y., Sugawara, T., Paul, NA., Zhao, J., 2018. Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermediumFood Chemistry, 242, pp. 247–255. DOI: DOI: https://doi.org/10.1016/j.foodchem.2017.09.075.
Wang, X., Zhang, Z., Wu, Y., Sun, X. and Xu, N., 2019. Synthesized sulfated and acetylated derivatives of polysaccharide extracted from Gracilariopsis lemaneiformis and their potential antioxidant and immunological activity. International Journal of Biological Macromolecules, 124, pp. 568–572.
Wehr, JD. and Sheat, RG., 2003. Freshwater algae of North America, Ecology and Classification. Elsevier Science, USA.
Wei, X., Cai, L., Liu, H., Tu, H., Xu, X., Zhou, F. and Zhang, L., 2019. Chain conformation and ciological cctivities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydrate Polymers, 208, pp. 86–96.
Wen, Z-S., Xiang, X-W., Jin, H-X., Guo, X-Y., Liu, L-J., Huang, Y-N., OuYang, X-K., Qu, Y-L., 2016. ‘Composition and Anti-Inflammatory Effect of Polysaccharides from Sargassum horneri in RAW264.7 Macrophages. International Journal of Biological Macromolecules, 88, pp. 403–413.
Wen, ZY. and Chen, F., 2002. Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of
Whitton, BA., 2002. Phylum Cyanophyta (Cyanobacteria). The Freshwater Algal Flora of the British Isles. Cambridge University Press, Cambridge. ISBN 978-0-521-77051-4.
Wu, G-J., Shiu, S-M., Hsieh, M-C. and Tsai, G-J., 2016. Anti-Inflammatory Activity of a Sulfated Polysaccharide from the Brown Alga Sargassum cristaefolium. Food Hydrocolloids, 53, pp.16–23.
Xia, S., Wang, K., Wan, L., Li, A., Hu, Q. and Zhang, C., 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurit. Marine Drugs, 11, pp. 2667–2681.
Xiong, F., Kopecky, J. and Nedbal, L., 1999. The occurrence of UV-B absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae. Aquatic Botany, 63, pp. 37–49.
Yang, J.H., 2012. Topical application of fucoidan improves atopic dermatitis symptoms in NC/Nga mice. Phytotherapy Research, 26, pp. 1898–1903.
Yegdaneh, A., Saeedi, A., Vaseghi, G. and Shahmiveh, T. 2020. The effect of Sargassum glaucescens from the Persian Gulf on neuropathy pain induced by paclitaxel in mice. Advanced Biomedical Research, pp.1-4.
Yongmanitchai, W. and Ward, O.P. 1989. Omega-3 fatty acids: alternative sources of production. Process Biochemistry, 24, pp. 117 – 25.
Yurko-Mauro, K., McCarthy, D., Rom, D., Nelson, EB., Ryan, AS., Blackwell, A., Salem, N. and Stedman, M., 2010. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimer’s & Dementia, 6, pp. 465–464.
Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Kong, R., Han, C. and Liu, Z., 2015. Fucoxanthin: A promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine, 723515.
Zhang, Z., Wang, X., Su, H., Pan, Y., Han, J., Zhang, T. and Mao, G., 2018. Effect of Sulfated Galactan from Porphyra haitanensis on H2O2-Induced Premature Senescence in WI-38 Cells. International Journal of Biological Macromolecules, 106, pp. 1235–1239.
Zheng, J., Chen, Y., Yao, F., Chen, W. and Shi, G., 2012. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenaxMarine Drugs, 10, pp. 2634–2647.
Zhou, G., Sheng, W., Yao, W. and Wang, C., 2006. Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacological Research, 53, pp. 129–134. DOI: https://doi.org/10.1016/j.phrs.2005.09.009.