The Effect of Some Environmental Factors on Biomass and Agar Content of Gracilaria corticata (Gracilariales, Rhodophyta)

Authors

1 Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Agronomy, Shahed University, Tehran, Iran

3 Fisheries Research Center of Bandar Abbas, Iran

4 Research Station of Mollusks of Persian Gulf, Bandar Lengeh, Iran

Abstract

The effects of some environmental parameterson biomass and agar yield of Gracilariacorticatawere examined under laboratoryconditions. The macroalga was collected fromnatural tidal pool with in Bostaneh coast (thePersian Gulf) in May 2004. In the laboratory,biomass and agar yield were measured after 45days examining effect of different temperatures(24, 27 and 32°C), photon irradiances (24, 66and 94 photons m-2s-1), and concentrations ofammonium phosphate [unenriched seawater(0), 0.04 and 0.08gl-1] in culture. Except forconcentration of ammonium phosphate, otherenvironmental variables showed no significantrelationship (P>0.05) with biomass and agarcontent of G. corticata. The agar yield derivedfrom the alga cultivated at 0.08gl-1 ammoniumphosphate (22.40±1.81%) was significantlygreater than the other treatments that makes G.corticata one of the commercial agarophytes(p<0.05).

Keywords


  1. Bird KT, Hanisak MD, Ryther J. (1981). Chemical quali
  2. ty and production of agar extracted from Gracilaria
  3. tikvahiae grown in different nitrogen enrichment conditions.
  4. Hydrobiologia. 2: 441-444.
  5. Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam
  6. KW. (2006). Effects of temperature and salinity on the
  7. growth of Gracilaria verrucosa and G. chorda, with
  8. the potential for mariculture in Korea. Journal of Applied
  9. Phycology.18: 269–277.
  10. Dawes CJ, Mathieson AC, Cheney DP. (1974). Ecological
  11. studies of Floridea neucheuma (Rhodphyta, Gigartinales)
  12. I. Seasonal growth and reproduction. Bulletin
  13. of Marine Science. 24: 235-273.
  14. Deboer JA, Guigly HJ, Israel TL, D’ella CF. (1978). Nutritional
  15. studies of two red algae. I. Growth rate as a
  16. function of nitrogen source and concentration. Phycology
  17. : 261-266.
  18. Deboer JA. (1979). Effects of nitrogen enrichment on
  19. growth rates and phycocolloid content on Gracilaria
  20. foliifera and Neoagardhiella baileyi (Florideophyceae)
  21. proc. International Seaweed Symposium.
  22. -273.
  23. D’elia CF and Deboer JA. (1978). Nutritional studies of
  24. two red algae: II Kinetics of ammonium and nitrate. Journal of Phycology. 14: 226-272.
  25. Destombe C, Godin J, Bodard M. (1988). The decay phase
  26. in the life history of Gracilaria verrucosa: In: T. Stadler
  27. J. Mollion MC. Verdus Y. Karamanos H. Morvan D.
  28. Christiaen, (eds), The consequences in intensive cultivation.
  29. Algal Biotechnology, Elsevier applied Science,
  30. London, UK.
  31. Eaton AD, Clesceri LS, Rice EW, Greenberg AE. (1998).
  32. Standard methods for the examination of water and
  33. waste water, American Public Health Association.
  34. Engeldow HR, Bolton JJ. (1992). Environmental tolerance
  35. in culture and agar content of Gracilaria verrucosa
  36. (Hudson) Papenfuss (Rhodophyta, Gigartinales)
  37. from Saldanha Bay. South African Journal of Botany.
  38. (4): 263-267.
  39. Freile-Pelegrin Y, Robledo D, Garcia-Reina G. (1995).
  40. Seasonal agar yield in Gelidium canariensis (Grunow)
  41. Seoane-Camba (Gelidiales, Rhodophyta) from Gran
  42. Canaria, Spain. Journal of Applied Phycology. 7: 141–
  43. Freile-Pelegrin Y, Robledo D, Serviere-Zaragoza E.
  44. (1999). Gelidium robustum agar: Quality characteristics
  45. from exploited beds and seasonality from an unexploited
  46. bed at Southern Baja California, M´exico. Hydrobiologia.
  47. /399: 501–507.
  48. Freile-Pelegrin Y. (2000). Does storage time influence
  49. yield and agar properties in the tropical agarophyte
  50. Gracilaria cornea. Journal of Applied Phycology.
  51. : 153–158.
  52. Friendlander M, Shalev R, Ganor T, Strimling S. (1987).
  53. Seasonal fluctuations of growth rate and chemical composition
  54. of Gracilaria cf. conferta in outdoor culture in
  55. Israel. Hydrobiologia. 151/152: 501-507.
  56. Givernaud AM, Hassani LA, Givernaud TH, LemoineY,
  57. Benharbet O. (1999). Biology and agar composition
  58. of Gelidium sesquipedale harvested along
  59. the Atlantic coast of Morocco. Hydrobiologia. 398-
  60. :391–395.
  61. Glenn E, Moore P, Akatagawa D, Himler M, Walsh A,
  62. Nelson T. (1999). Correlation between Gracilaria parvispora
  63. (Rhodophyta) biomass production and water
  64. quality factors on a tropical reef in Hawaii. Aquaculture.
  65. : 323-331.
  66. Hanisak MD. (1990). The use of Gracilaria tikvahiae
  67. (Gracilariales, Rhodophyta) as a model system to
  68. understand the nitrogen nutrition of cultured seaweeds.
  69. Hydrobiologia. 204/205: 79-87.
  70. Israel A, Martinez-Gross M, Friendler M. (1999). Effect
  71. of salinity and pH on growth and agar yield of Gracilaria
  72. tenuistipitata var. liui in laboratory and outdoor
  73. cultivation. Journal of Applied Phycology. 11: 543-
  74. Kakita H and Kamishima H. (2006). Effects of environmental
  75. factors and metal ions on growth of the red alga
  76. Gracilaria chorda Holmes (Gracilariales, Rhodo
  77. phyta). Journal of Applied Phycology. 18: 469- 474.
  78. Lapointe BE and Ryther JH. (1978). Some aspects of
  79. the growth and yield of Gracilaria tikvahiae in Culture.
  80. Aquaculture. 15:185-193.
  81. Larned S. (1998). Nitrogen versus phosphorous limited
  82. growth and sources of nutrients for coral ceef macroalgae.
  83. Marine Biology. 132: 409-421.
  84. Lingell A, Ekman P, Pedersen M. (1987). Cultivation
  85. technique for marine seaweeds allowing controlled and
  86. optimized conditions in the laboratory and on a pilot
  87. scale. Botanica Marina. 30: 417-424.
  88. Marinho–Soriano E, Bourret E, Casabianca MLD, Maury
  89. L. (1999). Agar from reproductive and vegetative
  90. stages of Gracilaria bursa- pastoris. Bioresource Technology.
  91. : 1-5.
  92. Marinho–Soriano E, Silva TSF, Moreira WSC. (2001).
  93. Seasonal variation in the biomass and agar yield from
  94. Gracilaria Cervicoris and Hydropuntia Cornea
  95. From Brazil. Bioresource Technology. 77: 115-120.
  96. Marinho-Soriano E and Bourret E. (2003). Effects of
  97. season on the yield and quality of agar from Gracilaria
  98. species (Gracilariaceae, Rhodophyta). Bioresource
  99. Technology. 90: 329–333.
  100. Mercado JM, Carmona R, Niell FX. (2000). Affinity for
  101. inorganic carbon of Gracilaria tenuistipita cultured at
  102. low and high irradiance. Planta. 210: 758-764.
  103. McLachlan J and Bird CJ. (1986). Gracilaria (Gigartinales,
  104. Rhodophyta) and productivity. Aquatic Botany. 26:
  105. -49.
  106. Molloy FJ. (1992). Studies on the ecology and production
  107. of seaweeds of economic and potential economic
  108. importance on the Namibian Coast. PhD Thesis, University
  109. of Cape Town, Cape Town South Africa.
  110. Nelson SG. (1995). Immediate enrichment of photosynthesis
  111. by coral reef macrophytes in response to ammonia
  112. enrichment. Proc. 5th International Coral Reef Congress,
  113. Tahiti. 65-70.
  114. Nelson SG, Edward P, Conn J, Moore D, Akutagawa M.
  115. (2001). Cultivation of Gracilaria parvispora (Rhodophyta)
  116. in shrimp-farm effluent ditches and floating cages
  117. in Hawaii: A two phase polyculture system. Aquaculture.
  118. : 239-248.
  119. Orduna-Rojas J and Robledo D. (2002). Studies on the tropical
  120. agarophyte Gracilaria cornea J. Agaradh (Rhodophyta,
  121. Gracilariales) from Yucatan, Mexico. II Biomass
  122. assessment and reproductive phenology. Botanica Marina.
  123. : 459-464.
  124. Orduna-Rojas J, Garcia-Camacho KY, Orozco-Meyer P,
  125. Riomsena-Rodrigez R, Pacheco-Ruiz I, Zertuche-Gonzalez
  126. JA, Meling-Lopez AE. (2008). Agar properties of
  127. two species of Gracilariaceae from the Gulf of California,
  128. Mexico. Journal of Applied Phycology. 20: 169–175.
  129. Oza RM. (1978). Studies on Indian Gracilaria. IV. Seasonal
  130. variation in agar and gel strength of Gracilaria
  131. corticata J. Agardh Occurring on the coast of Veraval.
  132. Botanica Marina. 21: 165–167.
  133. Ryther JH, Corwin N, Debusk TA, Williams LD. (1981).
  134. Nitrogen uptake and storage by the red algae Gracilaria
  135. tikvahiae. Aquaculture. 26: 107-115.
  136. Singh A, Ramakrishna T, Murthy MS. (1979). Some ecological
  137. observations on two agarophytes from India.
  138. Hydrobiologia. 75: 185-188.
  139. Skriptsova AV, Titlyanova TV, Titlyanova EA. (2001).
  140. Red algae of the genus Gracilaria in the South of the
  141. Russian Far East. Russian Journal of Marine Biology.
  142. : 538-552.
  143. Smit AJ, Robertson BL, Dupreez DR. (1997). Influence
  144. of ammonium-N pulse concentrations and frequency,
  145. tank condition and nitrogen starvation on growth rate
  146. and biochemical composition of Gracilaria gracilis.
  147. Journal of Applied Phycology. 8: 73-481.
  148. Stellaroslin A. (2001a). Seasonal variation in the growth
  149. of marine algae in relation to environmental parameters
  150. in Arochiapuram coast. Indian Hydrobiology. 4: 86-93.
  151. Stellaroslin A. (2001b). Seasonal variation in the agar
  152. content of marine red algae in relation of environmental
  153. parameters at arochiapuram coast. Indian Hydrobiology.
  154. : 79-85.
  155. Subbaraju DP, Ramakrishna T, Murthy MS. (1981). Effects
  156. of some growth regulators on Gracilaria corticata
  157. an agarophyte. Aquatic Botany. 10: 75-80.
  158. Tsai CC, Chang JS, Sheu F, Shyu YT, Yu AYC, Wong SL,
  159. Dai CCF, Lee TM. (2005). Seasonal growth dynamics
  160. of Laurencia papillosa and Gracilaria coronopifolia
  161. from a highly eutrophic reef in Southern Taiwan temperature
  162. limitation and nutrient availability. Journal of
  163. Experimental Marine Biology and Ecology. 315:49-69.
  164. Wakibia JG, Anderson RJ, Keats DW. (2001). Growth
  165. rates and agar properties of three gracilarioids in suspended
  166. open-water cultivation in St. Helena Bay. South
  167. African Journal of Applied Phycology. 13: 195-207.
  168. Westermeier R, Gomez I, Rivera P. (1993). Suspended
  169. farming of Gracilaria Chilensis (Rhodophyta, Gigartinales)
  170. at Cariquilda River, Maullin, Chile. Aquaculture.
  171. : 215-229.
  172. Yang H, Zhou Y, Mao Y, Li X, LivY, Zhan F. (2005).
  173. Growth characters and photosynthetic capacity of
  174. Gracilaria lemaneiformis as a biofilter in a shellfish
  175. farming area in Sanggou Bay, China. Journal of Applied
  176. Phycology. 17: 199-206.
  177. Yang YF, Fei XG, Song JM, Hu HY, Wang GC, Chung
  178. IK. (2006). Growth of Gracilaria lemaneiformis under
  179. different cultivation conditions and its effects on nutrient
  180. removal in Chinese coastal waters. Aquaculture.
  181. : 248-255.
  182. Yokoya NS, Kakita H, Obika H, Kitamura T. (1999). Effects
  183. of environmental factors and plant growth regulators
  184. on growth of the red alga Gracilaria vermiculophylla
  185. from Shikoka Island, Japan. Hydrobiologia.
  186. -399: 399-374.