Impact of Salinity and pH on Several Species of Anabaena (Nostocaceae, Nostocales) Isolated from Rice Fields in Iran

Authors

1 Faculty of Life Sciences and Biotechnology, University of Shahid Beheshti, Evin, Tehran, Iran

2 Faculty of Life Sciences and Biotechnology, University of Shahid Beheshti, Evin, Tehran, Iran.

Abstract

The purpose of this study is to developa biofertilizer based on filamentous nitrogen-fixing cyanobacteria selected from ricefields and to generate a technological packagecompatible with its use for the rice cropin Iran. Cyanobacteria was isolated and purifiedfrom rice fields in Kalate Naderi. Inthis research we studied the effect of salinity(NaCl, 0, 1, 2 and 4%) and pH (5, 7, 9 and11) on growth and chlorophyll-a contentsin six species of Anabaena. Results showedthat Anabaena sphaerica Bornet & Flanaultpossessed the best adaptation to pH changes.It could be more active in 5-11 pH values.A. vaginicola F.E. Fritsh & Rich andA. variabilis Kutzing ex Bornet & Flanaultwere remarkable for salinity tolerance. Theyadapted to salinity stress up to 2% salt concentrationin the medium. Our results indicatedthat the growth of all strains decreaseby 4% salt concentration and pH 11. Indeed,Anabaena is a cyanobacterium with nitrogenfixation ability and high potency of adaptationto environmental stress. So, it canbe a useful candidate for biofertilizer in agriculture,particularly in rice fields.

Keywords


  1. References:
  2. Alvensleben N, Stookey K, Magnusson M, Heimann K. (2013). Salinity Tolerance of Picochlorum atomus and the Use of Salinity for Contamination Control by the Freshwater Cyanobacterium Pseudanabaena limnetica. Plos one. 8 (5): 63-69.
  3. Chakraborty P, Acharyya T, Raghunadh Babu P. V, Bandhyopadhyay D. (2011). Impact of salinity and pH on phytoplankton community in a tropical freshwater system: An investigation with pigment analysis by HPLC. Journal of Environmental Monitoring. 13 (3): 614-620
  4. Desicachary TV. (1959). Cyanophyta. Indian Council of Agricultural Research, New Dehli. 684 pp.
  5. Jean J, Huang Nancy H, Kolodny Jennifer T. Redfearn Mary MA. (2002). The acid stress response of the cyanobacterium Synechocystis sp. strain PCC 6308. Archive of Microbiology. 177: 486–493.
  6. Komarek J and Anagnostidis K. (1989). Modern approach to the classification system of cyanophytes, 4-Nostocales. –Arch. Hydrobiol. Suppl. 82. Algological Studies. 56: 247-345.
  7. Moisander PH, McClinton E, Pearl HW. (2002). Salinity effects on growth, photosynthetic parameters and nitrogenase activity in estuarine planktonic cyanobacteria. Microbiology Ecology. 43: 432-442.
  8. Park YK, Bearson B, Bang SH, Bang IS, Foster JW. (1996). Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Molecular Microbiology. 20: 605–611.
  9. Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V. (2009). Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of Applied Phycology. 21: 135–144.
  10. Rajendran U, Kathirvel E, Narayanaswamy, A. (2007). Desication-induced changes in antioxidant enzymes, fatty acids and amino acids in the cyanobacterium Tolypothrix scytonemoides. World Journal of Microbiology and Biotechnology. 23: 251-257.
  11. Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart W, DP. (1986). Organic solute accumulation in osmotically stressed cyanobacteria. FEMS. Microbiological Review. 39: 51-56.
  12. Roychoudhury P, Kaushik BD, Venkataraman LVV. (1985). Response of Tolypothrix ceylonica to sodium stress. Current Sciences. 54:1181-1183.
  13. Sekar S. and Subramanian G. (1999). Influence of Low Levels of Salinity on the Primary Metabolism of the Freshwater Cyanobacteria Phormidium and Nostoc. Revista Brasileira de Fisiologia Vegetal. 11 (2): 83-89.
  14. Singh PK. (1985). Nitrogen fixation by blue-green algae in paddy fields. In: Jaiswal PL (ed) Rice research in India. Indian Council of Agricultural Research, New Delhi. pp 344–362.
  15. Singh PK. (1988). Biofertilization of rice crop. In: Sen SP, Palit P (eds) Biofertilizers: potentialities and problems. Plant Physiology Forum, Calcutta. pp 109–114.
  16. Soltani N, Khavari-Nejad R, Tabatabaie M, Shokravi Sh, Valiente EF. (2005). Screening of soil cyanobacteria for antimicrobial activity. Pharmaceutical Biology. 43: 455-459.
  17. Soltani N, Khavari-Nejad R, Tabatabaie M, Shokravi Sh, Valiente EF. (2006). Variation of nitrogenase activity, photosynthesis and pigmentation of cyanobacterium Fischerella ambigua strain FS18 under different irradiance and Ph. World Journal Microbiology. Biotechology. 22: 571-576.
  18. Soltani N, Zarrini Y, Shokravi Sh, Baftechi L. (2007). Characterrization of a soil cyanobacterium Fischerella sp. FS 18 uder NaCl stress. Journal of Biological Sciences. 7 (6): 931-936.
  19. Stanier RY, Kunisawa R, Mandel M. (1971). Purification and properties of unicellular blue- green algae (order Chroococcales). Botanical Reviews. 35: 171-205.
  20. Steinberg CEW, Schafer H, Beisker W. (1998). Do acid tolerant cyanobacteria exist? Acta Hydrochimica et Hydrobiologica. 26: 13–19.
  21. Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL. (2001). Cyanobacterial biofertilizers in rice agriculture. Botanical Reviews. 67:453–516
  22. Watanabe A. (1973). On the inoculation of paddy fields in the Pacific area with nitrogen blue-green algae. Soil Biology Biochemistry. 5: 161–162
  23. Yamaguchi M. (1979). Biological nitrogen fixation in flooded rice fields. In: Watanabe I (ed) Nitrogen and rice. International Rice Research Institute, Los Baños. Philippines. pp 193–206.