Investigation of Phycobiliproteins in Osmundea caspica (Laurencia) (Zinova & Zaberzhinskaya) Maggs & L.M.McIvor Collected from the Coastal Waters of Nowshahr, Caspian Sea

Document Type : Original Article

Authors

1 Department of Marine Biology, Faculty of Marine Science, Tarbiat Modares University

2 Marine biology group, Faculty of marine science, Tarbiat Modares University, Mazandaran, Noor. Av. Emamreza.

3 Hormozgan Agricultural and Natural Resources Research and Education Center

Abstract

Phycobiliproteins, including phycocyanin, allophycocyanin, and phycoerythrin, have diverse applications in food, cosmetics, and biomedical industries. Consequently, optimizing extraction conditions and identifying high-yielding species remain critical areas of study. The genus Osmundea is recognized for its significant phycobilin content. This study examines the macroalga Osmundea caspica, a member of the phylum Rhodophyta. The specimens of O. caspica were collected from the Caspian coasts of Sisangan in Mazandaran Province (Iran). The samples were lyophilized and subsequently ground after washing and removal of impurities. The extraction of phycobilins was evaluated using three solvents: distilled water, 100 mM phosphate-buffered saline (PBS), and 150 mM PBS (all adjusted to pH 7). Two distinct protocols: freeze-thaw at –20 °C for 24 hours and ultrasonication at a power of 70 W for 10 minutes. The results demonstrated that phycoerythrin exhibited the highest concentration among the extracted phycobilins, with an average of 0.0453 mg/mL, followed by phycocyanin (0.0067 mg/mL) and allophycocyanin (0.0018 mg/mL). Conversely, utilizing distilled water as the extraction solvent in conjunction with the Freeze-thaw Pre-treatment resulted in a greater extraction efficiency when compared to alternative methods. The results of one-way ANOVA showed that the differences in the mean concentrations and purity levels of phycobiliproteins among the extraction methods were statistically significant at the 0.05 level. For concentrations of phycocyanin (F:3.551, df: 5, P< 0.05), allophycocyanin (F: 23.984, df: 5, P< 0.05), phycoerythrin (F: 23.685, df: 5, P< 0.05), total phycobiliproteins yield (F: 18.489, df: 5, P< 0.05), purity of phycocyanin (F: 16.109, df: 5, P< 0.05), allophycocyanin (F: 34.155, df: 5, P< 0.05) and phycoerythrin (F: 25.353, df: 5, P< 0.05). This study presents promising results, particularly regarding the potential of phycoerythrin among the phycobiliproteins of the red alga Osmundea caspica, and offers a clear perspective for further exploitation of this species.

Keywords


Berrouane, N.E.H., Attal, F.S., Benchabane, A., Saghour, I., Bitam, A., Gachovska, T. and Amiali, M., 2022. Freeze–thaw-, enzyme-, ultrasound-and pulsed electric field-assisted extractions of C-phycocyanin from Spirulina platensis dry biomass. Journal of Food Measurement and Characterization, 16(2), pp.1625-1635. DOI: https://doi.org/10.1007/s11694-021-01264-3.
Dumay, J., Morancais, M., Munier, M., Le Guillard, C. and Fleurence, J., 2014. Phycoerythrins: Valuable proteinic pigments in red seaweeds. In Advances in botanical research (Vol. 71, pp. 321-343). Academic Press. DOI: https://doi.org/10.1016/b978-0-12-408062-1.00011-1.
Eshaghzadeh, H., Shahbazi, M. and Sarpanah, A.N., 2023. Optimization of cell wall degradation, extraction buffer concentration, and evaluation of functional properties of phycoerythrin pigment from Caspian red macroalgae, Osmundea caspica (Rhodomelaceae, Rhodophyta). Journal of Fisheries, 76(2). DOI: 10.22059/jfisheries.2023.356631.1374.
Galland-Irmouli, A.V., Pons, L., Luçon, M., Villaume, C., Mrabet, N.T., Guéant, J.L. and Fleurence, J., 2000. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications, 739(1), pp.117-123. DOI: https://doi.org/10.1016/s0378-4347(99)00433-8.
Glazer, A.N. and Fang, S., 1973. Chromophore content of blue-green algal phycobiliproteins. Journal of Biological Chemistry, 248(2), pp.659-662. DOI:https://doi.org/10.1016/s0021-9258(19)44424-4.
Karuppannan, S., Sivakumar, M., Govindasamy, B., Chinnaraj, S., Maluventhan, V. and Arumugam, M., 2024. Reliable quality of R-phycoerythrin derived from Portieria hornemannii for effective antioxidant, antibacterial, and anticancer activity. Biomedical Engineering Advances, 7, p.100116. DOI: https://doi.org/10.1016/j.bea.2024.100116.
Kirst, H., Formighieri, C. and Melis, A., 2014. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1837(10), pp.1653-1664. DOI: https://doi.org/10.1016/j.bbabio.2014.07.009.
Kovaleski, G., Kholany, M., Dias, L.M., Correia, S.F., Ferreira, R.A., Coutinho, J.A. and Ventura, S.P., 2022. Extraction and purification of phycobiliproteins from algae and their applications. Frontiers in Chemistry, 10, p.1065355. DOI: https://doi.org/10.3389/fchem.2022.1065355.
Lauceri, R., Zittelli, G.C. and Torzillo, G., 2019. A simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal Research, 44, p.101685. DOI: https://doi.org/10.1016/j.algal.2019.101685.
Lijassi, I., Arahou, F., Koudi, S.T.H., Wahby, A., Benaich, S., Rhazi, L. and Wahby, I., 2025. Optimized extraction of phycobiliproteins from Arthrospira platensis: quantitative and qualitative assessment of C-Phycocyanin, Allophycocyanin, and Phycoerythrin. Brazilian Journal of Chemical Engineering, 42(1), pp.401-412. DOI: https://doi.org/10.1007/s43153-023-00428-6.
Marzorati, S., Schievano, A., Idà, A. and Verotta, L., 2020. Carotenoids, chlorophylls, and phycocyanin from Spirulina: supercritical CO 2 and water extraction methods for added value products cascade. Green Chemistry, 22(1), pp.187-196. DOI: https://doi.org/10.1039/c9gc03292d.
Merlo, S., Gabarrell Durany, X., Pedroso Tonon, A., and Rossi, S., 2021. Marine microalgae contribution to sustainable development. Water, 13(10), p.1373. DOI: https://doi.org/10.3390/w13101373.
Minkova, K.M., Tchernov, A.A., Tchorbadjieva, M.I., Fournadjieva, S.T., Antova, R.E. and Busheva, M.C., 2003. Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. Journal of biotechnology, 102(1), pp.55-59. DOI: https://doi.org/10.1016/s0168-1656(03)00004-x.
Mittal, R., Sharma, R. and Raghavarao, K.S.M.S., 2019. Aqueous two-phase extraction of R-Phycoerythrin from marine macro-algae, Gelidium pusillum. Bioresource Technology, 280, pp.277-286. DOI: https://doi.org/10.1016/j.biortech.2019.02.044.
Mittal, R., Tavanandi, H.A., Mantri, V.A. and Raghavarao, K.S.M.S., 2017. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry, 38, pp.92-103. DOI: https://doi.org/10.1016/j.ultsonch.2017.02.030.
Munier, M., Jubeau, S., Wijaya, A., Morançais, M., Dumay, J., Marchal, L., Jaouen, P. and Fleurence, J. (2014). Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chemistry, 150, pp.400–407. DOI:https://doi.org/10.1016/j.foodchem.2013.10.113.
‌Nguyen, H.P.T., Morançais, M., Fleurence, J. and Dumay, J. (2016). Mastocarpus stellatus as a source of R-phycoerythrin: optimization of enzyme assisted extraction using response surface methodology. Journal of Applied Phycology, 29(3), pp.1563–1570. DOI: https://doi.org/10.1007/s10811-016-1024-z.
Page, L.E., Liberton, M. and Pakrasi, H.B., 2012. Reduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp. strain PCC 6803 by phycobilisome antenna truncation. Applied and Environmental Microbiology, 78(17), pp.6349-6351. DOI: https://doi.org/10.1128/aem.00499-12.
Pagels, F., Guedes, A.C., Amaro, H.M., Kijjoa, A. and Vasconcelos, V., 2019. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), pp.422-443. DOI: https://doi.org/10.1016/j.biotechadv.2019.02.010.
Pereira, T., Barroso, S., Mendes, S., Amaral, R.A., Dias, J.R., Baptista, T., Saraiva, J.A., Alves, N.M. and Gil, M.M., 2020. Optimization of phycobiliprotein pigments extraction from red algae Gracilaria gracilis for substitution of synthetic food colorants. Food Chemistry, 321, p.126688. DOI: https://doi.org/10.1016/j.foodchem.2020.126688.
Rousseau, F., Gey, D., Kurihara, A., Maggs, C.A., Martin-Lescanne, J., Payri, C., de REVIERS, B., Sherwood, A.R. and Le Gall, L., 2017. Molecular phylogenies support taxonomic revision of three species of Laurencia (Rhodomelaceae, Rhodophyta), with the description of a new genus. European Journal of Taxonomy, (269). DOI: https://doi.org/10.5852/ejt.2017.269.
Roy, S., Llewellyn, C.A., Egeland, E.S. and Johnsen, G. eds., 2011. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press.
Sharmila Banu, V.M., Santhosh, S., Hemalatha, V., Venkatakrishnan, V. and Dhandapani, R., 2017. Optimization study on extraction & purification of phycoerythrin from red algae Kappaphycus alvarezii. Asian Journal of Pharmaceutical and Clinical Research, 10(2), pp.297-302. DOI: https://doi.org/10.22159/ajpcr.2017.v10i2.15598.
Silveira, S.T., Burkert, J.D.M., Costa, J.A.V., Burkert, C.A.V. and Kalil, S.J., 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource technology, 98(8), pp.1629-1634. DOI: https://doi.org/10.1016/j.biortech.2006.05.050.
Sintra, T.E., Bagagem, S.S., Ahsaie, F.G., Fernandes, A., Martins, M., Macário, I.P., Pereira, J.L., Gonçalves, F.J., Pazuki, G., Coutinho, J.A. and Ventura, S.P., 2021. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Separation and Purification Technology, 255, p.117538. DOI: https://doi.org/10.1016/j.seppur.2020.117538.
Stepanian, O.V., 2016. Macrophytobenthos of the Caspian Sea: Diversity, distribution, and productivity. Oceanology, 56, pp.395-405. DOI: https://doi.org/10.1134/s0001437016030218.
Sudhakar, M.P., Jagatheesan, A., Perumal, K. and Arunkumar, K., 2015. Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Research, 8, pp.115-120. DOI: https://doi.org/10.1016/j.algal.2015.01.011.
Zavřel, T., Chmelík, D., Sinetova, M.A. and Červený, J., 2018. Spectrophotometric determination of phycobiliprotein content in cyanobacterium Synechocystis. Journal of Visualized Experiments: Jove, (139), p.58076. DOI: https://doi.org/10.3791/58076.